Volume 66 | Issue 8 | Year 2020 | Article Id. IJMTT-V66I8P514 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I8P514
S R SWAMY, Y SAILAJA, "HORADAM POLYNOMIAL COEFFICIENT ESTIMATES FOR TWO FAMILIES OF HOLOMORPHIC AND BI-UNIVALENT FUNCTIONS," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 8, pp. 131-138, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I8P514
[1] A. G. Alamoush, Certain subclasses of bi-univalent functions involving the Poisson distribution associated with Haradam polynomials, Malaya Journal of Matematik, 7 (4) (2019), 618-624. doi.org/10.26637/MJM0704/0003.
[2] A. G. Alamoush, Coefficient estimates for certain subclass of bi-functions associated the Horadam polynomials, arXiv: 1812 .10589v1 [math.CV] 22 Dec 2018, 7 pages.
[3] A. Alsoboh and M. Darus, On Fekete-Szeg¨o problem associated with q-derivative operator, IOP conf. Series: Journal of Physics: Conf. Series 1212 (2019) 012003. doi: 10.1088/1742-6596/1212/1/012003.
[4] S¸¸ Altınkaya and S. Yalc¸ın, On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions, Gulf J. Math., 5(3) (2017), 34-40.
[5] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, In: S. M. Mazhar, A. Hamoui, N.S. Faour (eds) Mathematical analysis and its applications. Kuwait, pp 53-60, KFAS Proceedings Series, Vol. 3 (1985), Pergamon Press (Elsevier Science Limited), Oxford, 1988; see also Studia Univ. Babes¸-Bolyai Math., 31(2) (1986), 70-77.
[6] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C R Acad. Sci. Paris S´er I(352) (2014), 479-484.
[7] M. C¸ a˘glar, E. Deniz and H. M. Srivastava, S˙econd Hankel determinant for certain subclasses of bi-univalent functions, Turk. J. Math., 41 (2017), 694-706.
[8] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259. Springer-Verlag, New York, (1983).
[9] M. Fekete and G. Szego¨, Eine Bemerkung U¨ ber Ungerade Schlichte Funktionen, J. Lond. Math. Soc., 89 (1933), 85-89.
[10] P. Filipponi and A.F. Horadam, Derivative sequences of Fibonacci and Lucas polynomials. In: G. E. Bergum, A. N. Philippou, A. F. Horadam (eds) Applications of Fibonacci Numbers, vol 4 (1990), pp 99-108, Proceedings of the fourth international conference on Fibonacci numbers and their applications,Wake Forest University,Winston- Salem, North Carolina; Springer (Kluwer Academic Publishers), Dordrecht, Boston and London, 4 (1991), 99- 108.
[11] P. Filipponi and A.F. Horadam, Second derivative sequence of Fibonacci and Lucas polynomials, Fibonacci Quart., 31 (1993), 194-204.
[12] A. F. Horadam and J. M. Mahon, Pell and Pell - Lucas polynomials, Fibonacci Quart., 23 (1985), 7-20.
[13] T. H¨orc¸um and E. G¨okc¸en Koc¸er, On some properties of Horadam polynomials, Int. Math. Forum., 4 (2009), 1243-1252.
[14] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63-68.
[15] A. I. Lupas,¸ A guide of Fibonacci and Lucas polynomials, Octagon Math. Mag., 7 (1999), 2-12.
[16] M. H. Mohd and M. Darus, Fekete-Szeg¨o problems for Quasi-Subordination classes, Abst. Appl. Anal.,Article ID 192956, 14 pages (2012), doi: 10.1155/2012/192956.
[17] S. R. Swamy, Ruscheweyh derivative and a new generalized multiplier differential operator, Annal. Pure. Appl. Math.,10(2) (2015), 229-238.
[18] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192.
[19] H. M. Srivastava, S¸¸ Altınkaya and S. Yalc¸ın, Certain Subclasses of bi-Univalent functions associated with the Horadam polynomials, Iran J. Sci. Technol. Trans. Sci., (2018). doi.org/10.1007/s 40995-018-0647-0.
[20] A. K. Wanas and A. A. Lupas, Applications of Horadam polynomials on Bazilevic bi- univalent function satisfying subordinate conditions, IOP Conf. Series: Journal of Physics: Conf. Series 1294 (2019) 032003, doi:10.1088/1742-6596/1294/3/032003.
[21] T-T. Wang and W-P. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications. Bull. Math. Soc. Sci. Math. Roumanie (New Ser.), 55 (103) (2012), 95-103.