Volume 66 | Issue 9 | Year 2020 | Article Id. IJMTT-V66I9P503 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I9P503
Edouard Diouf, "An analytical solution of a hollow cylindrical tube subjected to inflation," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 9, pp. 9-16, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I9P503
[1] L.E.Malvern. Introduction to the mechanics of continuous medium. Prentice-Hall, Inc. Englewood Cliffs, NL, 1969.
[2] V.Birman, B.LW, Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60, 195-216, 2007.
[3] A. Kawasaki, M. Niino, A. Kumakawa, Multiscale, multifunctional and functionally graded materials. Sendai, Japan, Materials science forum, 10th International Symposium on MM, FGMs, 2008.
[4] V.Birman, T. Keil, S. Hosder. Functionally graded materials in engineering. Structural interfaces and attachments in biology, Springer, New York, 2012.
[5] M.Das, I.Guven, E. Madenci. Coupled BEM and FEM analysis of functionally graded underfill layers in electronic packages, Proc 55th IEEE Electron Compon Technol Conf1, 995-1005, 2005.
[6] J.Aboudi, M-J.Pindera, SM. Arnold. Higher-order theory for functionally graded materials. Compos B: Eng 30B:777-832, 1999.
[7] X.Q. He, T.Y. Ng, S. Sivashanker, K.M. Liew. Active control of FGM plates with integrated piezoelectric sensors and actuators, Int. J. Eng. Sci. 38,1641–1655, 2001.
[8] J. Xu, X. Zhu, Z. Meng. Effect of the interdiffusion reaction on the compatibility in PZT/PNN functionally gradient piezoelectric materials, IEEE Trans. Compon. Packag. Technol. 22,11–16,1999.
[9] A.A. Almajid, M. Taya. 2D-elasticity of FGM piezo-laminates under cylindrical bending, J. Intel. Mater. Syst. Struct. 12,341– 351,2001.
[10] A.A. Almajid, M. Taya, S. Hudnut. Analysis of out-of-plane displacement and stress field in a piezocomposite plate with functionally graded microstructure, Int. J. Solids Struct. 38,3377–3391,2000.
[11] E. Pan. Exact solution for functionally graded anisotropic elastic composite laminates, J. Compos. Mater.37,1903–1920,2003.
[12] Z. Zhong, E.T. Shang. Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate, Int. J. Solids Struct. 40,5335–5352,2003.
[13] F.Sidoroff. Mécanique des milieux continus. Engineering school. École Centrale de Lyon, Hal Id :cel-00530377,1980.
[14] L.Hin,G.dui,S.Yang,J.Zhang. An elasticity solution for functionally graded thick-walled tube subjected to internal pressure. Int.Journal of Mechanical Sciences, 89,344-349,2014.