Volume 66 | Issue 9 | Year 2020 | Article Id. IJMTT-V66I9P504 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I9P504
Jérémie Gaston Sambou, Edouard Diouf, "An equivalence between the rank 1 convexity and polyconvexity of energy functions on SL+(3)," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 9, pp. 17-25, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I9P504
[1] Aubert : Necessary and sufficient conditions for isotropic rank one functions in dimension 2; Journal of Elasticity, 39, 31-46 (1995).
[2] B. Dacorogna., "Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension". Discrete and continuous dynamical systems-series B, Vol 1, Number 2, pp. 257-263 (2001).
[3] E. Diouf. " Sur l’ellipticité des équations non linéaires pour une certaine classe de matériau isotrope et compressible". International Journal of Innovation and Applied Studies, ISSN 2028-9324 Vol. 13 No. 2 Oct., pp. 327-334 (2015).
[4] A. Lyapunov. "The general problem of the stability of motion". CRC Press, (ISBN 0748400621), (1992).
[5] J. M. Ball. ?Convexity conditions and existence theorems in nonlinear elasticity". Arch. Rat. Mech. Anal. 63, pp. 337?403 (1977).
[6] I. D. Ghiba, R. G. martin, P. Neff. "Rank-one convexity implies polyconvexity in isotropic planar incompressible elasticity". arXiv:1609.01339v1 [math.CA], 5 Sep 2016.
[7] Hjørungnes. "Complex-Valued Matrix Derivatives: With Applications in Signal Processing and Communications". CUP, p. 121- , (2011). 9