Volume 66 | Issue 9 | Year 2020 | Article Id. IJMTT-V66I9P516 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I9P516
Akanksha Shukla, Shalini Shekhawat, Kanak Modi, "Generalized Fractional Calculus Operators Involving Multivariable Aleph Function," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 9, pp. 132-138, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I9P516
[1] C.K. Sharma, S.S.Ahmad. On the multivariable I-function. Acta ciencia Indica Math, 20(2): 113-116,1994.
[2] D. Kumar, S. Kumar.Fractional integrals and derivatives of the generalized Mittag-Leffler type function. International Scholarly Research Notices, Article ID 907432, 2014.
[3] D.Kumar, R.K. Gupta, D. S.Rawat , J. Daiya. Hypergeometric fractional integrals of multiparameter K-Mittag-Leffler function. Nonlinear Sci Lett A, 9(1): 17-26, 2018.
[4] F.Y. Ayant.An integral associated with the Aleph-functions of several variables. International Journal of Mathematics Trends and Technology (IJMTT), 3 (3):142-154, 2016.
[5] F.Y. Ayant., Fourier Bessel Expansion for Aleph-Function of several variables II. Journal of Ramanujan Society of Mathematics and Mathematical Sciences,5(1): 39- 46, 2016.
[6] F.Y. Ayant., Certains classes generating functions associated with the Aleph-function of several variables II. South East Asian Journal of Mathematics and Mathematical Sciences, Accepted for Publication in 2018.
[7] H.M. Srivastava, R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24:119-137, 1975.
[8] K. Sharma., On the integral representation and applications of the generalized function of two Variables. International Journal of Mathematical Engineering and Sciences, 3(1):1-13, 2014.
[9] M. Saigo., A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep., College General Ed. Kyushu Univ., 11:135-143,1978.
[10] N.Sudland, B. Baumann, T.F. Nonnenmacher, Open problem: who knows about the Aleph-functions? Fract. Calc. Appl. Anal., 1(4): 401-402, 1998.
[11] R.K. Saxena, M. Saigo., Certain properties of Fractional Calculus operator associated with generalized Mittag-Leffler function. Frac. Cal. Appl. Anal., 8(2): 141-154, 2005.
[12] R.K. Gupta, B.S. Shaktawat, D. Kumar, Certain relation of generalized fractional calculus associated with the generalized Mittag-Leffler function. Journal of Rajasthan Academy of Physical Sciences, 15(3):117-126,2016.
[13] S.G. Samko, A.A. Kilbas, O.I. Marichev.Fractional Integral and Derivatives, Theory and Applications. Gordon and Breach, Yverdon et alibi, (1993).
[14] V.B.L. Chaurasia, S. C. Pandey, On the fractional calculus of generalized Mittag-Leffler Function. Math. Sci., 20:113- 122,2010.