Volume 66 | Issue 9 | Year 2020 | Article Id. IJMTT-V66I9P521 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I9P521
In this paper we calculate the hybrid power mean of 2kth power inversion of L-functions, twisted trigonometric sums and general quartic Gauss sums. We also discuss its asymptotic formula with the help of the properties of Gauss sums and Dirichlet characters.
[1] Mordell L J, On a sum analogous to a Gausss sum, Quart. J. Math. Oxford, 3 (1932) 161-167.
[2] W. Zhang, Y. Deng, A hybrid mean value of the inversion of L-functions and general quadratic Gauss sums, Nagoya Mathematical Journal, 167(2002) 1-15.
[3] Shikha singh and Jagmohan tanti, \Hybrid mean value of 2k-th power inversion of L-functions and general quartic Gauss sums", Proc. Indian Acad. Sci. (Math. Sci.) (2019) 129:23. 15
[4] Hua L.K and Min S H, On a double exponential sum, Science Record, 1 (1942) 23-25.
[5] Min S H, On systems of algebraic equations and certain multiple exponential sums, Quart. J. Math. Oxford, 18 (1947) 133-142.
[6] Li Xiaoxue and Hu Jiayuan, The hybrid power mean of quartic Gauss sums and Kloosterman sums, Open Math., 15(2017), 151-156.
[7] Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[8] R. MA, J. Zhang and Y. Zhang, On the 2m-th power mean of Dirichlet L-functions with the weight of trigonometric sums, Proc. Indian Acad. sci. (Math. sci.), 119(2009), 411-421.
[9] W. Zhang, On the 2k-th power mean of inversion of Dirichlet L-function, Chinese Journal of Con- temporary Mathematics, 14(1993), 1-7.
[10] K. Feng, Gauss sums with applications, Tsing University, 2005.
[11] H. Davenport, Multiplicative number theory, Markham, 1967.
[12] Y. Yi and W. Zhang, On the first power mean of Dirichlet L-functions with weight of gauss sums, Journal of Systems Science and Mathematical, 20(03),(2000) 346-351.
[13] Y. Yi and W. Zhang, On the 2k-th Power mean of Dirichlet L-functions with the weight of Gauss sums, Advances in Mathematics, 31 (6) (2002), 517-526.
[14] Weil, On some exponential sums, Proc. Nat. Acad. Sci. USA ,34 (1948), 204207.
[15] W. Zhang, Moments of generalized quadratic gauss sums weighted by L-function, Journal of Number Theory, 92(2)(2002), 304-314.
Shikha Singh, Jagmohan Tanti, "Hybrid power mean of 2kth power inversion of L-functions, trigonometric sums and general quartic Gauss sums," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 9, pp. 176-191, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I9P521