Volume 66 | Issue 9 | Year 2020 | Article Id. IJMTT-V66I9P523 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I9P523
Ramesh Kumar Joshi, Vijay Kumar, "New Lindley-Rayleigh Distribution with Statistical properties and Applications," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 9, pp. 197-208, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I9P523
[1] Rayleigh, L., “On the stability or instability of certain fluid motions,” Proceedings of London Mathematical Society, vol. 11, pp. 57-70, 1880.
[2] Dyer, D.D. and Whisenand, C.W., “Best linear unbiased estimator of the parameter of the Rayleigh distribution”, IEEE Transaction on Reliability, vol. 22, pp. 27-34, 1973.
[3] Voda, V. G., “Note on the truncated Rayleigh variate”, Revista Colombiana de Matematicas, vol. 9, pp. 1–7, 1975.
[4] Bhattacharya, S.K. and Tyagi, R. K., “Bayesian survival analysis based on the Rayleigh model,” Trabajos de Estadistica, vol. 5, pp. 81- 92, 1990.
[5] Fernandez, A.J., “Bayesian estimation and prediction based on Rayleigh sample quantiles”. Quality & Quantity, vol. 44, p. 1239-1248, 2010.
[6] Gomes, A.E., da-Silva, A.Q., Cordeiro, G.M. and Ortega, E.M.M., “A new lifetime model: the Kumaraswamy generalized Rayleigh distribution”, Journal of Statistical Computation and Simulation, vol. 84, pp. 280-309, 2014.
[7] MirMostafaee, S. M. T. K., Mahdizadeh, M., & Lemonte, A. J., “The Marshall–Olkin extended generalized Rayleigh distribution: Properties and applications”. Communications in Statistics-Theory and Methods, vol. 46(2), pp. 653-671, 2017.
[8] Iriate, Y.A., Vilca, F., Varela, H. and Gomez, H.W., “Slashed generalized Rayleigh distribution”, Communications in Statistics - Theory and Methods, vol. 46, p. 4686-4699, 2017.
[9] Cakmakyapan, S., & Ozel, G., “New Lindley-Rayleigh distribution with application to lifetime data”. Journal of Reliability and Statistical Studies, vol. 11(2), 2018.
[10] Iriarte, Y. A., Castillo, N. O., Bolfarine, H., & Gómez, H. W., “Modified slashed-Rayleigh distribution”. Communications in Statistics- Theory and Methods, vol. 47(13), pp. 3220-3233, 2018.
[11] Biçer, H. D., “Properties and Inference for a New Class of Generalized Rayleigh Distributions with an Application”. Open Mathematics, vol. 17(1), pp. 700-715, 2019.
[12] Lindley, D.V., “Fiducial distributions and Bayes’ theorem,” Journal of the Royal Statistical Society Series B, vol. 20, pp. 102-107, 1958.
[13] Ghitany, M.E., Atieh, B., & Nadarajah, S., “Lindley distribution and its application”. Math. Comput. Simul. Vol. 78, pp. 493–506, 2008.
[14] Ristić, M. M., & Balakrishnan, N., “The gamma-exponentiated exponential distribution”. Journal of Statistical Computation and Simulation, vol. 82(8), pp. 1191-1206, 2012.
[15] Moors, J. J. A., “A quantile alternative for kurtosis”. Journal of the Royal Statistical Society: Series D (The Statistician), vol. 37(1), pp. 25-32, 1988.
[16] Swain, J. J., Venkatraman, S. & Wilson, J. R., ‘Least-squares estimation of distribution functions in johnson’s translation system’, Journal of Statistical Computation and Simulation vol. 29(4), pp.271–297, 1988.
[17] Macdonald, P. D. M., “Comments and Queries Comment on “An Estimation Procedure for Mixtures of Distributions” by Choi and Bulgren.” Journal of the Royal Statistical Society: Series B (Methodological), vol. 33(2), pp. 326-329, 1971.
[18] Hinkley, D., “On quick choice of power transformations.” Journal of the Royal Statistical Society, Series (c), Applied Statistics, vol. 26, pp. 67-69, 1977.
[19] Venables, W. N., Smith, D. M. and R Development Core Team. An Introduction to R, R Foundation for Statistical Computing, Vienna,Austria, 2020. ISBN 3-900051-12-7. URL http://www.r-project.org.
[20] Kumar, V. and Ligges, U., reliaR : A package for some probability distributions, 2011. http://cran.rproject. org/web/packages/reliaR/index.html.
[21] Kundu, D., and Raqab, M.Z., “Generalized Rayleigh Distribution: Different Methods of Estimation,” Computational Statistics and Data Analysis, vol. 49, pp. 187-200, 2005.
[22] Smith, R.M. and Bain, L.J., “An exponential power life-test distribution,” Communications in Statistics, vol. 4, pp. 469-481, 1975.
[23] Murthy, D.N.P., Xie, M. and Jiang, R., Weibull Models, Wiley, New York, 2003.
[24] Nadarajah, S. and Haghighi, F., “An extension of the exponential distribution.” Statistics, vol. 45(6), pp. 543-558, 2011.