Volume 67 | Issue 11 | Year 2021 | Article Id. IJMTT-V67I11P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I11P507
In this paper, we study the notion of Q-fuzzy implications on interval-valued intuitionistic fuzzy soft groupand its related properties are investigated. Characterizations of interval-valued intuitionistic Q-fuzzy soft subgroupare established and how images or inverse images of interval-valued intuitionistic fuzzy soft subgroupbecome interval-valued intuitionistic fuzzy soft subgroup studied.
[1] Atanassov. K,Intuitionistic fuzzy sets, Fuzzy sets and Systems 20 (1986) 87-96.
[2] K.A.Dib and A.A.M.Hassan, The fuzzy normal subgroup, Fuzzy Sets and Systems 98 (1988) 393-402.
[3] N.Kuroki, Fuzzy congruence and Fuzzy normal subgroups, Inform.Sci. 60 (1992) 247-361.
[4] J.P.Kim and D.R.Bae, Fuzzy congruence in groups, Fuzzy Sets and Systems 85 (1997) 115-120.
[5] I.J.Kumar, P.K.Saxena and Pratibha Yadava, Fuzzy normal subgroups and fuzzy quotients, Fuzzy Sets and Systems 46 (1992) 121-132.
[6] D.S.Malik and J.Mordesen, A note on fuzzy relations and fuzzy groups, Inform.Sci.56 (1991) 193-198.
[7] N.P.Mukherjee, Fuzzy normal subgroups and fuzzy cossets, Inform.Sci. 3 225-239.
[8] S.V.Manemaran and R.Nagarajan,International Journal of Mathematics and Computer applications Research, .9(2) (2019) 1-12.
[9] S.V.Manemaran and R.Nagarajan, S-fuzzy soft Quotient group under congruence relation, International Journal of Research and Analytical Reviews,5(2) (2019) 209-216.
[10] D.A.Molodtsov, Soft set theory first results, Comput. Math. Appl. 37 (1999) 19-31.
[11] R.Nagarajan and K.Balamurugan, On interval-valued bi-cubic vague subgroups,Annals of Pure & Applied Mathematics,6(2) (2014) 133-139.
[12] A.Rosenfeld, Fuzzy groups, J.Math.Anal.Appl.35 (1971), 512-517.
[13] E.Roventa andT.Spircu, Groups operating on fuzzy sets, Fuzzy Sets and Systems 120 (2001) 543-548.
[14] M.Samhan, Fuzzy congruence’s on semi groups, Inform. Sci.74 (1993) 165-175.
[15] A.Solairaju and R.Nagarajan, Q-fuzzy left R-subgroup of near rings w.r.t T- norms, Antarctica Journal of Mathematics,5(2) (2008) 59-63.
[16] A.Solairaju and R.Nagarajan, A New structure and construction of Q-fuzzy groups, Advances in Fuzzy Mathematics, 4(1) (2009) 23-29.
[17] A.Solairaju and R.Nagarajan, Some structure properties of Q-cyclic fuzzy group family, Accepted for publications, Antarctica Journal of mathematics, .7 (2010).
[18] A.Solairaju and R.Nagarajan, Lattice valued Q-fuzzy left R-submodules of near rings w.r.t T- norms, Advances in fuzzy mathematics, 4(2) (2009) 137-145.
[19] Tan Yijia, L-fuzzy congruence on a semi group, J.Fuzhon University, 22(5) 1994 8-13.
[20] Wanging Wu, Normal fuzzy subgroups, Fuzzy Math I (1981) 21-30.
[21] Wanging Wu, Fuzzy congruence’s and normal fuzzy groups, Fuzzy Math. 3(1988), 9-20
[22] L.A.Zadeh, Similarity relations and fuzzy orderings, Inform.Sci. 3 (1971) 177-200. .
T.Portia Samathanam, G.Subbiah, M.Navaneethakrishnan, "Interval-Valued Intuitionistic Q-Fuzzy Soft Subgroup Structures," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 11, pp. 54-62, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I11P507