Volume 67 | Issue 12 | Year 2021 | Article Id. IJMTT-V67I12P503 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I12P503
M.A. Afolabi, S.O. Adewale, "Sensitivity Analysis on Mathematical Modeling of Transmission Dynamics of Tuberculosis–Malaria Co-infections," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 12, pp. 21-40, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I12P503
[1] Adewale, S.O., Podder, C.N. and Gummel A.B., Mathematical Analysis of a TB transmission model with DOTS, Canadian Applied Mathematical Quarterly, 17(1) (2009) Spring.
[2] Adewale, S.O., Ajao, S.O., Olopade, I.A. Adeniran, G.A. and Oyewumi, A.A., Effect of Chemoprophylaxis Treatment on Dynamical Spread of Malaria. International Journal of Scientific and Engineering Research, 7(1) (2016) January 2016. ISSN 2229-5518.
[3] Castillo-Chavez C and Song B. Dynamical Models of Tuberculosis and their Application. Mathematical Biosciences Eng 1(2) (2004) 361-404. https://doi.org/10.3934/mbe.2004.1,361.
[4] Centre for Disease Control and Prevention (CDC) (2000), On emergence of mycobacterium tuberculosis with extensive resistance to second line drugsworldwide, http://www.ncbi.nln.nih.gov/pubmed/1655723
[5] Centre for Disease Control and Prevention (CDC) (2007): Malaria, Retrievedfromhttp://www.cdc.gov/malaria/fact.html.
[6] Chitnis, N., Hyman J. M. and Cushing J. M, Determining Important Parameters in the spread of malaria Through the Sensitivity Analysis of a Model, Bulletin of Mathematics Biology (2008) Dot 10 1007/s1538 008 9299 0.
[7] Driessche, P. V. and Watmought, J. Reproduction Numbers and Sub-Threshold Endemic Equlibria for Compartmental Models of Disease Transmission. Math. Biosciences, 180(2002)29-48. https://doi.org/1o.1016/S0025-5564(02)00108-6
[8] Fukunaga, R., Glaziou, P., Harris, J.B., Date, A., Floyd, K. and Kasaeva, T. (2021). Epidemilogy of Tuberculosis and Progress Towards Meeting Global Targets-Worldwide. Morbidity and Mortality Weekly Report (MMWR) v.70(12) p427-430, 2021 March 26. Doi-10.15585/mmwr.mm7012a4.
[9] Hethcole, H.W. (2000), The mathematics of infectious diseases. Society for industrial and applied mathematics (SIAM) 42(4): pp 599-653
[10] Lakshmikanthan V., Laela S. and Martynyuk, A.A. (1989), Stability Analysis of Nonlinear Systems. Marcel Dekker, Inc., New York and Basel
[11] Nainggolan, J., Sudradjat Supian, Supriatna A.K. and Anggrian N. (2013), Mathematical Model of Tuberculosis Transmission with Recurrent Infection and Vaccination, Journal of Physics: Conference Series 423 (2013) 012059.
[12] Ochieng Ombaka. Sensitivity of Treatment and Counseling in Co-infection Model of HIV/AIDS, Tuberculosis and Malaria. IJRRAS 26 (2) (2016) 78- 89 (2016)
[13] Okuonghae, D and Korobeinikov A., Dynamics of tuberculosis: The effect of Direct Observation Therapy Strategy (DOTS) in Nigeria, Math. Modeling Natural Phenomena 2(1) (2007) 101-113
[14] Olaniyi, S., Okosun, K.O. and Adesanya, S.O. (2018). Global stability and Optimal Control Analysis of Malaria Dynamics in the Presence of Travelers. Open Infect. Dis. J. 10 (2018) 166-186 doi.2174/18742793081810010166
[15] Page, K.R., Jedlicka, A.E., Fakheri, B., Noland, G.S. Kesavan, A.K. Scott, A.L.,Kumar, N. and Manabe, Y.C. (2005). Mycobacterium Induced Potentiation of type 1 immune Response and Protection Against Malaria are host Specific. Infect Immun. 73(12) (2005) 8369-8380
[16] Mwamtobe, P. M., Simelane, S. M, Abelman, S. and Tchuenche, J. M. Optimal Control of Intervention Strategies in Malaria-Tuberculosis Co-infection with Relapse. International Journal of Biomathematics. 11(2) (2018) 1850017. Doi:10.1142/S1793524518500171.
[17] Mtisi, J.E., Rwezaura, H. and Tchuenche, J,M,. A mathematical analysis of Malaria-Tuberculosis Co-dynamics. Discrete Cintin. Dynam. Syst. Ser. B. 12(4) (2009) 827-864
[18] Nyabadza, F., Bekele, B. T., Rua, M. A., Malonza, D. M., Chiduk. N. and Kgosimore, M. (2015): The implications of HIV treatment on the HIV- malaria co-infection Dynamics: A modeling perspective. Biomed. Research International. Hindawi, Publishing corporation article ID 659651
[19] Rollback Malaria(2010):What is malaria?Available at http://www.rollbackmalaria.org/cmc__upload/0/0000/015/372/RBMinfosheet_1.pdf
[20] Sharomi, O., Podder, C. N., Gumel, A. B., and Song, B. Mathematical analysis of transmission dynamics of HIV/TB co-infection in the presence of treatment. Mathematical Biosciences and Engineering Journal 5(1) (2008) 145 – 174.
[21] Vroj Wiwanikit, Co-infection between tuberculosis and malaria: A consideration Interaction of Molecules and Pathogenesis. J Vect. Borne Dis. 43 (2006) 195-197
[22] World Health Organization Report. “malaria vaccine becomes first to achieve WHO-Specified 75% efficacy goal” https://www.eurekalert.org/news-releases/744976. furekAlert 23, April, 2021.
[23] World Health Organization (WHO) Global tuberculosis control: Surveillance, planning financing. Geneva 2006b, WHO/HTM/TB/2006.376
[24] WHO (2018): 10 facts on malaria. Available at http://www.who.int/features/factfiles/malaria/en/ Accessed on 09/11/19
[25] Mueller, A..k., Behrends, J., Blank, J., Schaible, U. E., and Schneider, B. E. An Experimental Model to Study Tuberculosis-Malaria Co-infection upon Natural Transmission of Mycobacterium tuberculosis and Plasmodium bergehi. Journal of Visualized Experiments. J. Vis.Exp (84), e50829, doi:10.3791/50829 (2014)
[26] Okosun, K. O. and Makinde, O. D. A co-infection model of malaria and cholera diseases with optimal control. Mathematical Biosciences. 258 (2014) 19-32
[27] Olaniyi, S. and Obabiyi, O.S. Qualitative Analysis of malaria Dynamics with nonlinear incidence Function. Appl. Math. Sci. 8(78) (2014)3889-3904. Doi:10.12988/ams.2014.45326.
[28] Afolabi, M.A., Adewoye, K.S., Folorunso, A.I. and Omoloye, M. A. A Mathematical Model on Transmission Dynamics of Meningococcal Meningitis. Iconic Research and Engineering Journal. APR 2021. IRE journals, 4(10) (2021) 59-66. ISSN:2456-8880.