Volume 67 | Issue 12 | Year 2021 | Article Id. IJMTT-V67I12P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I12P505
T. Abirami, M. Suresh Kumar, "A STUDY ON ITERATED FUNCTION SYSTEMS," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 12, pp. 47-56, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I12P505
[1] M. F. Barnsley, Fractals everywhere. Academic Press, Harcourt Brace Janovitch, 1988
[2] K. J. Falconer, Fractal geometry: Mathematical foundations and applications. Second edition, John Wiley and Sons, Ltd, 2005.
[3] J. Hutchinson, Fractals and self-similarity. Indiana Univ. J. Math. 30, 1981 (p.713-747)
[4] A. Jadczyk, Quantum Fractals, From Heisenbergs Uncertainty to Barnsleys Fractality. World Scientific, 2014.
[5] K. Lesniak, Infinite iterated function systems: a multivalued approach. Bulletin of the Polish Academy of Sciences Mathematics 52, nr.1, 2004 (p.1-8)
[6] B. B. Mandelbrot, The fractal geometry of nature(Vol. 173). New York: WH freeman, 1983.
[7] A. Mihail, R. Miculescu, Applications of Fixed Point Theorems in the Theory of Generalized IFS. Fixed Point Theory and Applications 2008, Article ID 312876, 11 pages.
[8] N. A. Secelean, Countable Iterated Function System. Far East Journal of Dynamical Systems, Pushpa Publishing House, vol. 3(2), 2001 (p.149-167)
[9] N. A. Secelean, Any compact subset of a metric space is the attractor of a CIFS. Bull. Math.Soc. Sc. Math. Roumanie, tome 44 (92), nr.3, 2001 (p.77-89)
[10] N. A. Secelean, Generalized countable iterated function systems. Filomat, 2011, 25(1), 21-36.
[11] N. A. Secelean, Some continuity and approximation properties of a countable iterated function system. Mathematica Pannonica, 14/2, 2003 (p.237-252)
[12] N. A. Secelean, The existence of the attractor of countable iterated function systems. Mediter-ranean journal of mathematics, (2012), 9(1), 61-79.
[13] N. A. Secelean, Generalized iterated function systems on the space l1(X). J. Math. Anal. Appl.410, no. 2 (2014), 847-858.
[14] Yuval Fisher, Fractal Image Compression: Theory and Application. Springer Verlag, New York, 1995