Volume 67 | Issue 12 | Year 2021 | Article Id. IJMTT-V67I12P506 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I12P506
Let G = (V(G), E(G)) be a connected simple graph. A subset S of V(G) is a dominating set of G if for every u ∈ V(G\S), there exists v ∈ S such that uv ∈ E(G). A dominating set D is called a restrained dominating set if for each u ∈ V(G)\D there exists v ∈ V(D) and z ∈ V(G)\D(z ≠ u) such that u is adjacent to v and z. Further, if D is a minimum restrained dominating set of G, then a restrained dominating set S ⊆ V(G)\D is called an inverse restrained dominating set of G with respect to D. A disjoint restrained dominating set of G is the set C = D ∪ S ⊆ V(G). In this paper, we investigate the concept and give some important results on disjoint restrained domination arising from the join and corona of two graphs.
[1] G. Chartrand and P. Zhang. A First Course in Graph Theory, Dover Publication, Inc., New York, 2012.
[2] Ore O., (1962), Theory of Graphs, American Mathematical Society, Provedence, R.I.
[3] Dayap, J.A. and Enriquez, E.L., (2020), Outer-convex domination in graphs, Discrete Mathematics, Algorithms and Applications, 12(01) (2020)
pp. 2050008., https://doi.org/10.1142/S1793830920500081
[4] Enriquez, E.L. and Ngujo, A.D., (2020), Clique doubly connected domination in the join and lexicographic product of graphs, Discrete
Mathematics, Algorithms and Applications, 12(05), pp. 2050066. , https://doi.org/10.1142/S1793830920500664
[5] Enriquez, E.L. and Canoy,Jr., S.R., (2015), On a Variant of Convex Domination in a Graph, International Journal of Mathematical Analysis, 9(32),
pp. 1585-1592.
[6] Enriquez, E.L. and Canoy,Jr. S.R., (2015), Secure Convex Domination in a Graph, International Journal of Mathematical Analysis, 9(7), pp. 317-
325.
[7] Gomez, L.P. and Enriquez, E.L., (2020), Fair Secure Dominating Set in the Corona of Graphs, International Journal of Engineering and
Management Research, 10(03), pp. 115-120 , https://doi.org/10.31033/ijemr.10.3.18.
[8] M.P. Baldado Jr, E.L. Enriquez, Super secure domination in graphs, International Journal of Mathematical Archive, 8 (12) (2017), 145-149.
[9] M.P. Baldado, G.M. Estrada, and E.L. Enriquez, Clique Secure Domination in Graphs Under Some Operations, International Journal of Latest
Engineering Research and Applications, 3(6) (2018), pp 08-14.
[10] E.L. Enriquez, E. Samper-Enriquez, Convex Secure Domination in the Join and Cartesian Product of Graphs, Journal of Global Research in
Mathematical Archives, 6(5), 2019, pp 1-7.
[11] G.M. Estrada, C.M. Loquias, E.L. Enriquez, and C.S. Baraca, Perfect Doubly Connected Domination in the Join and Corona of Graphs,
International Journal of Latest Engineering Research and Applications, 4(7) (2019), pp 11-16.
[12] E.L. Enriquez, V. Fernandez, Teodora Punzalan, and Jonecis Dayap, Perfect Outer-connected Domination in the Join and Corona of Graphs,
Recoletos Multidisciplinary Research Journal, 4(2) (2016) pp 1-8.
[13] J.A. Telle, A. Proskurowski, Algorithms for Vertex Partitioning Problems on Partial 𝑘 Trees, SIAM J. Discrete Mathematics, 10(1997), 529-550.
[14] Enriquez, E.L., (2020), Fair Restrained Domination in Graphs, International Journal of Mathematics Trends and Technology, 66(1), pp. 229-235.
[15] Galleros, DH.P. and Enriquez, E.L., (2020),Fair Restrained Dominating Set in the Corona of Graphs, International Journal of Engineering and
Management Research, 10(03), pp. 110-114 , https://doi.org/10.31033/ijemr.10.3.17
[16] T.J. Punzalan, and E.L. Enriquez, Restrained Secure Domination in the Join and Corona of Graphs, Journal of Global Research in Mathematical
Archives, 5(5) (2018), pp 01-06.
[17] E.M. Kiunisala, and E.L. Enriquez, Inverse Secure Restrained Domination in the Join and Corona of Graphs, International Journal of Applied
Engineering Research, 11(9) (2016) pp. 6676-6679.
[18] C.M. Loquias, and E.L. Enriquez, On Secure Convex and Restrained Convex Domination in Graphs, International Journal of Applied Engineering
Research, 11(7) (2016) pp. 4707-4710.
[19] E.L. Enriquez, Secure restrained convex domination in graphs, International Journal of Mathematical Archive, 8(7) (2017) pp. 1-5.
[20] B.F. Tubo and S.R. Canoy, Jr., Restrained Perfect Domination in Graphs, International Journal of Mathematical Analysis, 9(25) (2015), pp. 1231 –
1240
[21] T.J. Punzalan, E.L. Enriquez, Inverse Restrained Domination in Graphs, Global Journal of Pure and Applied Mathematics. 12(3) (2016), pp. 2001 -
2009.
[22] V.R. Kulli and S.C. Sigarkanti, Inverse domination in graphs, Nat.Acad. Sci. Letters, 14 (1991) 473-475.
[23] E.L. Enriquez, E.M. Kiunisala, Inverse Secure Domination in the Join and Corona of Graphs, Global Journal of Pure and Applied Mathematics,
12(2) (2016), pp. 1537-1545
[24] E.L. Enriquez, E.M. Kiunisala, Inverse Secure Domination in Graphs, Global Journal of Pure and Applied Mathematics, 12(1) (2016), pp. 147-155
[25] Salve, D.P., and Enriquez, E.L., (2016), Inverse Perfect Domination in the Composition and Cartesian Product of Graphs, Global Journal of Pure
and Applied Mathematics, 12(1), pp. 1-10.
[26] C.M. Loquias, E.L. Enriquez, J.A. Dayap, Inverse Clique Domination in Graphs, Recoletos Multidisciplinary Research Journal, 4(2) (2016) pp 21-
32.
[27] Kiunisala, E.M. and Enriquez, E.L., (2016), Inverse Secure Restrained Domination in the Join and Corona of Graphs, International Journal of
Applied Engineering Research, 11(9), pp. 6676-6679.
[28] D.P. Salve and E.L. Enriquez, Inverse Perfect Domination in Graphs, Global Journal of Pure and Applied Mathematics, 12(1) (2016), pp. 1-10
[29] R.C. Alota and E.L. Enriquez, On Disjoint Restrained Domination in Graphs, Global Journal of Pure and Applied Mathematics, 12(3) (2016), pp.
2385-2394
[30] J.A. Dayap and E.L. Enriquez, Disjoint Secure Domination in the Join of Graphs, Recoletos Multidisciplinary Research Journal, 4(2) (2016) pp 9-
20.
[31] H.R.A. Gohil and E.L. Enriquez, Inverse Perfect Restrained Domination in Graphs, International Journal of Mathematics Trends and Technology,
67(8) (2021) pp 164-170
[32] M.D. Garol and E.L. Enriquez, Disjoint Fair Domination in Graphs, International Journal of Mathematics Trends and Technology, 67(8) (2021) pp
157-163
[33] C.S. Castañares and E.L. Enriquez, Inverse Perfect Secure Domination in Graphs, International Journal of Mathematics Trends and Technology,
67(8) (2021) pp. 150-156
Stephen Paul G. Cajigas, Enrico L. Enriquez, Grace M. Estrada, Katrina E. Belleza, Carmelita M. Loquias, "Disjoint Restrained Domination in the Join and Corona of Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 12, pp. 57-61, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I12P506