...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 67 | Issue 12 | Year 2021 | Article Id. IJMTT-V67I12P509 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I12P509

On the Hamiltonicity of Closure of Graph


Richa Jain
Abstract

In this paper we discuss about the number of spanning cycles in closure of graph. The closure of a graph G is the graph obtained by adding edges between non-adjacent vertices whose degree sum is at least |V(G)|, until this can no longer be done. There are countless generalizations of paths and cycles and Hamiltonian properties in graphs, and one of these generalizations is the uniquely Hamiltonian graph. A graph is uniquely Hamiltonian if it contains exactly one spanning cycle. We proved the results about the Hamiltonicity, uniquely Hamiltonicity of closure of graph.

Keywords
Line graph, length of path, spanning cycle, spanning path, etc.
References

[1] Alhalabi, W., Kitanneh, A., Balfakih, Z., & Sarirete, A., Efficient solution for finding hamilton cycles in undirected graphs. SpringerPlus, 5 (2016) 1192. doi: 10.1186/s40064-016-2746-8.
[2] Beineke, L.W., Derived graphs and digraphs. Beitrfige zur Graphentheorie (Teubner, Leipzig) (1968).
[3] Benhocine, A. & Wojda, A. P., The geng-hua. fan conditions for pancyclic or hamilton connected graphs. Journal of Combinatorial Theory Series B, 42 (1987) 167–180. doi: 10.1016/00958956(87)90038-4.
[4] Chao, K., Song, C. & Zhang, P., Fan type condition and characterization of hamiltonian graphs. Proceedings of the American Mathematical Society, 142 (2014) 2303-2311. doi:10.1090/S0002-9939-2014-11977-0.
[5] Chvátal, V., Tough graphs and hamiltonian cycles. Discrete Mathematics, 5 (1973) 215-228. doi: 10.1016/j.disc.2006.03.011
[6] Dirac, G. A., Some theorems on abstract graphs. Proceedings London Mathematical Society, 3 (1952) 69–81. doi: 10.1112/plms/s3-2.1.69
[7] Faudree, R.J., Gould, R.J., Lesniak, L.M. & Lindquester, T.E., Generalized degree conditions for graphs with bounded independence number. Journal of Graph Theory, 19(1995)397-409. doi:10.1002/jgt.3190190312.
[8] Gould, R. J., Advances on the hamiltonian problem—a survey. Graphs Combinatorics, 19 (2003) 7–52. doi:10.1007/s00373-002-0492-x.
[9] Ore, O. Note on hamilton circuits. The American Mathematical Monthly, 67(1960) 55. doi:10.2307/2308928.

Citation :

Richa Jain, "On the Hamiltonicity of Closure of Graph," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 12, pp. 78-81, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I12P509

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved