Side Length of the Extension of Napoleon’s Outer Theorem on Triangle

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2021 by IJMTT Journal
Volume-67 Issue-1
Year of Publication : 2021
Authors : Silvia Riani, Mashadi, Leli Deswita
  10.14445/22315373/IJMTT-V67I1P505

MLA

MLA Style: Silvia Riani, Mashadi, Leli Deswita  "Side Length of the Extension of Napoleon’s Outer Theorem on Triangle" International Journal of Mathematics Trends and Technology 67.1 (2021):29-35. 

APA Style: Silvia Riani, Mashadi, Leli Deswita(2021). Side Length of the Extension of Napoleon’s Outer Theorem on Triangle  International Journal of Mathematics Trends and Technology, 29-35.

Abstract
This paper discusses the side lengths of the development of Napoleon's outer theorem on triangles by applying the special case Miquel's theorem. If in Napoleon's theorem the outer triangle uses an equilateral triangle, in this paper it has been modified by using isosceles right triangles as the outer triangle. The new triangle formed has a shape similar to the original triangle. Furthermore, determination of the side length of the new triangle formed utilizes the Pythagorean formula and cosine rule.

Reference

[1] I. E. Leonard, J. E Lewis, A. C. F Liu dan G. W. Tokarsky. (2014). Classical Geometry, Wiley, Canada.
[2] K. Beck and K. Porter, Proving Napoleon ’ s Theorem, Department of Mathematics Saint Mary’s College of California, (2017), 4-7.
[3] O. Cezikturk, Napoleon and Van Aubel Theorems on Geogebra, Int. Technol. Educ. J, 4 (2020), 15-21.
[4] M. De Villier, A Variation of Miquel’s Theorem and Its Generalisation, Math Gaz, 98 (2014), 334-339.
[5] N. Dimitrov, On some result related to Napoleon Configurations, Elem der Math, 68 ( 2013), 137-147.
[6] J. E. Wetzel, Converses of Napoleon’s Theorem, Am. Math. Mon., 99 (1992), 339–351.
[7] K. Egamberganov, A Generalization of the Napoleon’s Theorem, Mathematical Reflections ,(2017), pp. 1–7.
[8] B. Grunbaum, A Relative of Napoleon’s Theorem, Geombinatoric, 10 (2001), 116-121.
[9] B. Grunbaum, Is Napoleon’s Theorem Really Napoleon’s Theorem ,Am. Math. Mon., 119 (2012), 495–501.
[10] V. Milchev, Miquel Point and Isogonal Conjugation, Bulgaria, Petko Rachov Slaveikov, (2016), 1-14.
[11] W. Mustika, Mashadi, and S. Gemawati, Area of Outer Napoleon in the Parallelogram and Area of Outer Semi Napoleon in the Kite, IOSR J. Math., 15 (2020), 31–37.
[12] D. Pratiwi, Mashadi, and S. Gemawati, Pengembangan Titik Miquel Dalam pada Sebarang Segiempat, Euclid, 5 (2018), 1–13.
[13] Mashadi, C. Valentika and S. Gemawati, Development of Napoleon’s Theorem on the Rectangles in Case of Inside Direction, Int. J. Theor. Appl. Math, 3 (2017), 54-57.
[14] Mashadi, C. Valentika and S. Gemawati, Development of Napoleon’s Theorem on the Rectangles in Case of Outside Direction, Pure Appl. Math, 6 (2017), 108-113.
[15] C. Valentika, Mashadi and S. Gemawati, Pengembangan Teorema Napoleon pada Jajaran Genjang untuk Kasus Mengarah Keluar, Jurnal Sains Matematika dan Statistik, 2 (2016), 17-23.
[16] C. Valentika, Mashadi, and S. Gemawati, The Development of Napoleon’s Theorem on Quadrilateral with Congruence and Trigonometry, Bulletin of Mathematics, 8 (2016), 97-108.
[17] N. Yuliardani, Mashadi and S. Gemawati, Extension of Napoleon’s Theorem on Hexagon (In Indonesian: Pengembangan Teorema Napoleon pada Segienam), J. Medives, 2 (2018), 51-56.

Keywords : Miquel point, Napoleon’s theorem, outer Napoleon.