Volume 67 | Issue 1 | Year 2021 | Article Id. IJMTT-V67I1P508 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I1P508
R.B Ade, D.P Teltumbade, P.W Tasare, "Charecterizaton And Estimation of Area Biased Quasi Akash Distribution," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 1, pp. 53-59, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I1P508
[1] Abebe, Berhane & Shanker Rama. (2018). A Discrete Quasi Akash Distribution with Applications. TurkiyeKlinikleri journal of Biostatistics. 10. 187-199.
[2] Ade R.B, Aradhye G.R ,Pawar D.D. (2020). Some Statistical Properties of Area biased Generalized Uniform Distribution. IJSR 9.
[3] Elangovan, Re & Mohanasundari, R. (2020). A New Area-Biased Distribution with Applications in Cancer Data. Science, Technology and Development. VIII. 1-14.
[4] Fisher, R. A., (1934), the effects of methods of ascertainment upon the estimation of frequencies. Annals of Eugenics, 6, 13-25.
[5] Lappi J, Bailey RL., (1987), Estimation of diameter increment function or other tree relations using angle-count samples, Forest science 33: 725-739.
[6] Patil, G. P. & Rao, C. R. (1978). Weighted distributions and size biased sampling with applications to wildlife populations and human families. Biometrics 34, 179-189..
[7] Patil, G. P. & Ord, J. K. (1976). On size biased sampling and related form invariantWeighted distributions. Sankhya, Series B 38, 48-61.
[8] Rao, C. R., (1965), “On discrete distributions arising out of method of ascertainment, in classical and Contagious Discrete”, G.P. Patiled; Pergamum Press and Statistical publishing Society, Calcutta. 320-332.
[9] Shanker. R, (2016). A Quasi Akash Distribution and its application, Assam Statistical Review, 30(1), 135-160
[10] Van Deusen P.C., (1986), fitting assumed distributions to horizontal point sample diameters. For Sci 32(1): 146-148.