Volume 67 | Issue 1 | Year 2021 | Article Id. IJMTT-V67I1P513 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I1P513
Ezekiel Abiodun Oyekan, S.R. Swamy, Timothy Oloyede Opoola, "Ruscheweyh Derivative and a New Generalized Operator Involving Convolution," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 1, pp. 88-100, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I1P513
[1] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975) 109-115.
[2] S. R. Swamy, Inclusion properties of certain subclasses of analytic functions, Int. Math. Forum, 7(36) (2012) 1751-1760.
[3] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 27 (2004) 1429-1436.
[4] A. Catas, On certain class of p-valent functions defined by new multiplier transformations, Proceedings book of the an international symposium on geometric function theory and applications, August, 20-24, 2007, TC Istanbul Kultur Univ., Turkey, 241-250.
[5] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modeling, 37(1-2) (2003) 39-49.
[6] N. E. Cho and T. H. Kim, Multiplier transformations and strongly Close-to Convex functions, Bull. Korean Math. Soc., 40(3) (2003) 399-410.
[7] G. St.Salagean, Subclasses of univalent functions, Proc. Fifth Rou. Fin. Semin. Buch. Complex Anal., Lect. notes in Math., Springer -Verlag, Berlin, 1013(1983), 362-372.
[8] S. S. Bhoosnurmath and S. R. Swamy, On certain classes of analytic functions, Soochow J. Math., 20 (1) (1994) 1-9.
[9] S. R. Swamy, A note on a subclass of analytic functions defined by the Ruscheweyh derivative and a new generalized multiplier transformation, J. Math. Computational Sci., 2(4) (2012) 784-792.
[10] S. R. Swamy, New classes containing Ruscheweyh derivative and a new generalized multiplier differential operator, American International Journal of Research in Science, Technology, Engineering & Mathematics, 11(1) (2015) 65-71.
[11] S. R. Swamy, On analytic functions defined by Ruscheweyh derivative and a new generalized multiplier differential operator, Inter. J. Math. Arch., 6 (7) (2015) 168-177.
[12] S. R. Swamy, Subordination and superordination results for certain subclasses of analytic functions defined by the Ruscheweyh derivative and a new generalized multiplier transformation, J. Global Res. Math. Arch., 1 (6) (2013) 27-37.
[13] S. R. Swamy, Ruscheweyh Derivative and a New Generalized Multiplier Differential Operator, Annals of Pure and Applied Mathematics, 10(2), (2015), 229-238.
[14] A. Alb Lupas and L. Andrei, New classes containing generalized Salagean operator and Ruscheweyh derivative, Acta Univ. Apulensis, 38 (2014) 319-328.
[15] O. T. Opoola, On a subclass of Univalent Functions defined by a Generalized Differential operator, Int. J. Math. Anal. 18(11) (2017) 869-876.
[16] A. W. Goodman, Univalent functions. Vol. I, Mariner, Tampa, FL, 1983.
[17] P. L. Duren, Univalent functions, Springer, New York, 1983.
[18] S. Ruscheweyh, Convolutions in geometric function theory, Presses Univ. Montrรฉal, Montreal, Que., 1982.
[19] E. A. Oyekan and I. T. Awolere, A new subclass of univalent functions connected with convolution defined via employing a linear combination of two generalized differential operators involving sigmoid function, Maltepe J. Math., Vol. II Issue 2 (2020), 82-96
[20] M. Darus and R. Ibrahim, New classes containing generalization of differential operator, Applied Math. Sci., 3 (51) (2009) 2507-2515.
[21] H. Silverman, Univalent functions with negative coefficients, Proc, Amer. Math. Soc., 51(1) (1975) 109-116.