Volume 67 | Issue 2 | Year 2021 | Article Id. IJMTT-V67I2P503 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I2P503
A radio labeling of a graph ๐บ is a function ๐ from the vertex set ๐ (๐บ) to the set of non negative integers such that |๐(๐ข) โ ๐(๐ฃ)| โฅ ๐๐๐๐(๐บ) + 1 โ ๐๐บ(๐ข, ๐ฃ), where ๐๐๐๐(๐บ)and ๐๐บ (๐ข, ๐ฃ) are diameter and distance between ๐ข and ๐ฃ in graph ๐บ, respectively. The radio number ๐๐(๐บ) of ๐บ is the smallest number ๐ such that ๐บ has radio labeling with ๐๐๐ฅ{๐(๐ฃ) โถ ๐ฃ โ ๐ (๐บ)} = ๐. We investigate the radio number of some special type of path related graph.
[1] G.T Chartrand,D. Erwin and P. Zhang โA graph labeling suggested by FM channel restrictions Bull. Inst. Combin. Appl., 4(2005) 4357
[2] D. Bantva, โRadio number for total graph of pathsโ, ISRN combinatorics,(2013) 1-5.
[3] W.K Hale, โFrequency assignment:theory and applicationsโ, Proceedings of the IEEE,68(12)(1980) 1497-1514.
[4] J. Jaun, D.D.-F. Liu, Antipodal labelings of cycles, Ars Combin. 103(2012) 81โ86.
[5] R. Khennoufa, O. Togni, The radio antipodal and radio numbers of the hypercube, Ars Combin. 102(2011) 447โ461.
[6] R. Khennoufa, O. Togni, A note on radio antipodal colorigs of paths, Math.Bohem. 130(1)(2005) 277โ282.
[7] M. Kchikech, R. Khennoufa, and O. Togni, Radio k-labelings for cartesian products ofgraphs, Electronic Notes in Discrete Mathematics, 22(2005), 347352.
[8] S. R. Kola, P, Panigrahi, Nearly antipodal chromatic number acโฒ(Pn) of a path Pn, Math.Bohem. 134(1)(2009) 77โ86.
[9] S. R. Kola, P, Panigrahi, On Radio (n โ 4)-chromatic number the path Pn, AKCE Int. J. Graphs Combin. 6(1)(2009) 209โ217.
[10] S. R. Kola, P, Panigrahi, An improved Lower bound for the radio k-chromatic number of the Hypercube Qn, Comput. Math. Appl. 60(7)(2010) 2131โ2140.
[11] D.D.-F. Liu, Radio number for trees, Discrete Math. 308(2008) 1153โ1164.
[12] D.D.-F. Liu, M. Xie, Radio Number for Square Paths, Ars Combin. 90(2009) 307โ319.
[13] D.D.-F. Liu, M. Xie, Radio number for square of cycles, Congr. Numer. 169(2004) 105โ125.
[14] D. Liu, X. Zhu, Multi-level distance labelings for paths and cycles, SIAM J. Discrete Math. 19(3)(2005) 610โ621.
[15] D.D.-F. Liu, L. Saha, S. Das, Improved lower bounds for the radio number of treesTheoretical Computer Science, 851(2021), 1-13.
[16] S.R. Kola, P. Panigrahi, An improved lower bound for the radiok-chromatic number of the Hypercube Qn, Comput. Math. Appl. 60(7) (2010) 2131โ2140.
[17] X. Li, V. Mak, S. Zhou, Optimal radio labellings of complete m-ary trees, Discrete Appl. Math. 158(2010) 507โ515.
[18] M. Morris-Rivera, M. Tomova, C. Wyels, Y. Yeager, The radio number of Cn ร Cn, Ars Combin. 103(2012), 81-96.
[19] J.P. Ortiz, P. Martinez, M. Tomova, C. Wyels, Radio numbers of some generalized prism graphs, Discuss. Math. Graph Theory. 31(1)(2011) 45โ62.
[20] L. Saha, P. Panigrahi, On the Radio number of Toroidal grids, Australian J. of Combin. 55(2013) 273โ288.
[21] L. Saha, P. Panigrahi, A lower bound for radio k-chromatic number, Discrete Applied Mathematics, 192(2015) 87-100.
[22] L. Saha, P. Panigrahi, A Graph Radio k-coloring Algorithm, Lecture notes in Computer Science, 7643(2012) 125-129.
Alamgir Rahaman Basunia, Laxman Saha, Kalishankar Tiwary, "Radio Number of Some Path Related Graph," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 2, pp. 15-19, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I2P503