Volume 67 | Issue 2 | Year 2021 | Article Id. IJMTT-V67I2P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I2P507
Rupesh K. Srivastav, Sheetal Deshwal, "CONVERGENCE: NEW POST-WIDDER OPERATORS," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 2, pp. 43-52, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I2P507
[1] T. Acar, A. Aral, I. Rasa, The new forms of Voronovskaja's theorem in weighted spaces, Positivity 20(2016), 25{40. 65(2016), 121-132.
[2] S. Deshwal, P. N. Agrawal, and A. Serkan, Modified Stancu operators based on inverse Polya Eggenberger distribution, J Inequal Appl. (2017.1) (2017), 1-11.
[3] S. Deshwal and P.N. Agrawal, Mihesan-Kantorovich operators of blending type, Gen. Maths. 25(1-2) (2017) 11-27.
[4] B.R. Draganov and K.G. Ivanov, A characterization of weighted approximations by the Post-Widder and the Gamma operators, J. Approx. Theory, 146 (2007), 3-27.
[5] Z. Ditzian, On global inverse theorem of Szasz and Baskakov operators, canad. J. Math. 31 (2),(1979) 255-263.
[6] V. Gupta , D. Agrawal Convergence by modified Post-Widder operators, RACSAM. 113(2)(2019),1475-1486. https://doi.org/10.1007/s13398-018-0562-4.
[7] V. Gupta and R.P Agarwal, Convergence estimate in approximation theory, Springer, Cham (2014).
[8] V. Gupta and G. Tachev, Approximation with positive linear operators and linear combinations, Series developments in Mathematics, vol 50, Springer, Cham (2017).
[9] V. Gupta and G. Tachev, On approximation properties of Philips operators preserving exponential functions, Mediterr. J. Math 14(4), 177 (2017).
[10] C. P. May Saturation and inverse theorems for combinations of a class of exponential type operators Canad J Math. 28 (1976),1224-1250.
[11] L. Rempulska and M. Skorupka, On strong approximation applied to Post-Widder operators, Anal. Theory Appl., 22 (2006), 172-182.
[12] M. Sofyalioglu and K. Kanat Approximation properties of the Post-Widder operators preserving e2ax; a > 0, Math. Meth. Appl. Sci. 43(1) (2020), DOI:10.1002/mma.6192.
[13] R. A. DeVore and C. G. Lorentz, Constructive approximation, Springer, Berlin (1993).
[14] D. V. Widder, The laplace transform, Princeton mathematical series. Princeton University Press, Princeton (1941).