Volume 67 | Issue 2 | Year 2021 | Article Id. IJMTT-V67I2P509 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I2P509
In this paper, we consider the classical risk model with mixed dividend strategy. Integro-differential equations for the Laplace transform of exit times from interval are derived. Unlike previous studies, this paper uses exit time to calculate the expected discounted dividend payments prior to ruin under compound Poisson model. When the claims are exponentially distributed, the analytical solution is presented.
[1] B. Avanzi, H.U. Gerber, and E. S. W. Shiu, Optimal dividends in the dual model. Insurance Mathematics and Economics. 41 (2007) 111-123.
[2] B. Avanzi, V. Tu , and B. Wong, Optimal dividends under Erlang(2) inter-dividend decision times. Insurance Mathematics and Economics. 79 (2018)
225-242.
[3] S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out. Insurance: Mathematics and Economics. 20 (1997) 1-15.
[4] B. De Finetti, Su un' impostazione alternativa della teoria collectiva del rischio, in: Transactions of the XVth Internationnal Congress of Applied
Prbability. 41 (1975) 117-130.
[5] H. U. Gerber and E. S. W. Shiu, Optimal dividends:Analysis with Brownian motion. North American Actuarial Journal. 8(1) (2004) 1-20.
[6] H. U. Gerber and E. S. W. Shiu, On optimal dividend strategy in the compound Poisson model. North American Actuarial Journal. 10(2) (2006a) 76-93.
[7] H. U. Gerber and E. S. W. Shiu, On optimal dividends: From reflection to refraction. Journal of Computational and Applied Mathematics. 186 (2006b)
4-22.
[8] M. Jeanblanc-picqué and A. N. Shiryaev, Optimization of the Flow of dividends. Russian Mathematical Surveys. 20 (1995) 257-77.
[9] P. Li, C. Yin and M. Zhou, The exit time and the dividend value function for one-dimensional diffusion processes. (2013) ID 67520.
[10] P. Li, C.Yin and M. Zhou, The compound poisson risk model perturbed by diffusion with a hybrid dividend strategy. 2(2) (2014a) 8-20.
[11] P. Li, C.Yin and M. Zhou, Dividend payments with a hybrid strategy in the compound poisson risk model. 5 (2014b) 1933-1949.
[12] X. S.Lin and K. P. Pavlova, The compound Poisson risk model with a threshold dividend strategy. Insurance:Mathematics and Economics. 38 (2006)
57-80.
[13] X. S. Lin and K. P. Sendova. The compound Poisson risk model with multiple threshold. Insurance: Mathematics and Economics. 42 (2008) 617-627.
[14] Y. Fang and R. Wu, Optimal dividends in the Brownian motion risk model with interest. Journal of Computational and Applied Mathematics. 229
(2009) 145-151.
[15] C. Yin, Y. Wen and Y. Zhao, Y, On the optimal dividend problem for a spectrally positive lévy process. ASTIN Bulletin. 44(3) (2014) 635-651.
[16] C. Yin and Y. Wen, Optimal dividend problem with a terminal value for spectrally positive Lévy processes. Insurance Mathematics and Economics. 53
(2013) 769-773.
[17] D. Yao, H. Yang, and R. Wang, Optimal financing and dividend strategies in a dual model with proportional costs. Journal of Industrial and
Management Optimization. 6(4) (2010) 761-777.
[18] D. Yao, R. Wang and L. Xu, Optimal impulse control for dividend and capital injection with proportional reinsurance and exponential premium
principle, Journal Communications in Statistics-Theory and Methods. 46 (2016) 2519-2541.
Peng Li, "The Exit Time And The Dividend Problem For Compound Poisson Risk Model," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 2, pp. 57-67, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I2P509