On Radio Heronian D-distance Mean Number of Degree Splitting Graphs

**MLA Style: **K. John Bosco, Dinesh M. "On Radio Heronian D-distance Mean Number of Degree Splitting Graphs" International Journal of Mathematics Trends and Technology 67.2 (2021):114-120. **APA Style: **K. John Bosco, Dinesh M(2021). On Radio Heronian D-distance Mean Number of Degree Splitting Graphs. International Journal of Mathematics Trends and Technology, 114-120.

**Abstract**

A Radio Heronian Mean D-distance Labeling of a connected graph G is an injective map f from the vertex set V(G) to the N such that for two distinct vertices u and v of G, dD(u,v) + [(f(u)+√f(u)f(v)+f(v))/3]≥1+diam^{D}(G) where d^{D}(u,v) denotes the D-distance between u and v and diam^{D}(G) denotes the D-diameter of G. The radio heronian D-distance number of f, rhmn^{D}(f) is the maximum label assigned to any vertex of G. The radio heronian D-distance number of G, rhmn^{D}(G) is the minimum value of rhm n^{D}(f) taken over all radio heronian D-distance labeling f of G.

**Reference**

[1] F. Buckley and F. Harary, Distance in Graphs,Addition- Wesley, Redwood City, CA, (1990).

[2] G. Chartrand, D. Erwinn, F. Harary, and P. Zhang, Radio labeling of graphs, Bulletin of the Institute of Combinatorics and Its Applications, 33(2001) 77–85, 2001.

[3] G. Chartrand, D. Erwin, and P. Zhang, Graph labeling problem suggested by FM channel restrictions, Bull. Inst. Combin.Appl., 43, 43-57(2005).

[4] C. Fernandaz, A. Flores, M. Tomova, and C. Wyels, The Radio Number of Gear Graphs, arXiv:0809. 2623, September 15, (2008).

[5] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 19 (2012) #Ds6.

[6] W.K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (1980) 1497–1514.

[7] F.Harary, Graph Theory, Addisionwesley, New Delhi (1969).

[8] R. Khennoufa and O. Togni, The Radio Antipodal and Radio Numbers of the Hypercube, accepted in 2008 publication in ArsCombinatoria.

[9] D. Liu, Radio number for trees, Discrete Math. 308 (7)(2008) 1153–1164.

[10] D. Liu, X. Zhu, Multilevel distance labelings for paths and cycles, SIAM J. Discrete Math. 19 (3)(2005) 610–621.

[11] P. Murtinez, J. OrtiZ, M. Tomova, andC. Wyles, Radio Numbers For Generalized Prism Graphs, KodaiMath. J., 22(1999) 131-139.

[12] T.Nicholas and K.JohnBosco , Radio mean D-distance number of some graphs submitted to IJRESM,(2017).

[13] K. John Bosco and Dinesh M, Radio Heronian D-distance mean labeling of some basic graphs, International Journal of Research and Analytical Reviews, (2021).

[14] K. John Bosco and Dinesh M, Radio Heronian Dd-distance mean labeling of degree splitting graphs communicated.

[15] R.Ponraj, S.Sathish Narayanan and R.Kala, Radio mean labeling of graphs, AKCE International Journal of Graphs and Combinatorics 12 (2015) 224–228.

[16] R.Ponraj, S.Sathish Narayanan and R.Kala, On Radio Mean Number of Some Graphs, International J.Math. Combin. 3(2014) 41-48.

[17] R.Ponraj, S.Sathish Narayanan and R.Kala, Radio Mean Number Of Some Wheel Related Graphs, Jordan Journal of Mathematics and Statistics (JJMS) 7(4)(2014) 273 – 286.

[18] M. T. Rahim, I. Tomescu, OnMulti-level distance labelings of Helm Graphs, accepted for publication in ArsCombinatoria.

[19] Reddy Babu, D., Varma, P.L.N., D-distance in graphs, Golden Research Thoughts, 2(2013) 53-58.

[20] S S Sandhya and E. Ebin Raja Merly, Heronian mean labeling of graphs, International Mathematics Forum, 12(2017).

[21] S. Somasundaram and R. Ponraj, Mean labeling of graphs, National Academy of Science Letters, 26(2003) 210-213.

[22] S. Somasundaram, R. Ponraj and S S Sandhya, Harmonic Mean labeling of graphs, JCMCC (2017).

**Keywords : **D-distance, Radio D-distance number, Radio heronian D-distance, Radio heronian D-distance number.