Volume 67 | Issue 4 | Year 2021 | Article Id. IJMTT-V67I4P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I4P505
In this paper we obtain a generalization of Titchmarsh's Theorem for the Bessel type transform for functions satisfying the U - Bessel type Lipschitz condition in Lz,a,b(R) by using a generalized translation operator.
[1] V.A.Abilov and F.V.Abilova, Approximation of Functions by Fourier-Bessel sums, Izv. Vyssh, Uchebn Zaved, Mat;No.8,3-9(2001).
[2] V.A.Abilov, F.V.Abilova and M.K.Kerimov, On Estimates for the Fourier- Bessel Integral Transform in the L2(R+), Vol.49,No.7(2009).
[3] M.El.Hamma,and R.Daher, Generalization of Titchmansh's Theorem for the Bessel transform,Romanian Journal of Mathematics and Computer Science, Vol.2, No.2,17-22(2012).
[4] I.A.Kipriyanov, Singular Elliptic value problems,[in Russian],Nauka, Moscow(1997).
[5] B.M.Levitan, Expansion in Fourier series and integrals over Bessel, Uspekhi Mat. Nauk,6.No.2,102- 143(1951).
[6] K.Trimeche,Transmutation operators and mean periodic functions associated with dierential operators, Math.Rep.4,No.1,1-282(1988).
[7] E.C.Titchmarsh, Introduction to the theory of Fourier Integrals, Claredon, Oxford, 1948,Komkniga, Moscow,2005.
[8] A.L.Zayed,Handbook of Function and Generalized function transformations,(CRC,Boca Raton, 1996) 5.
Balasaheb Bhagaji Waphare, Yashodha Sanjay Sindhe, "Titchmarsh Theorem and its Generalization for the Bessel type transform," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 4, pp. 26-30, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I4P505