Volume 67 | Issue 4 | Year 2021 | Article Id. IJMTT-V67I4P509 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I4P509
Lie groups is an intersection of two fundamental fields of mathematics: algebra and geometry. Lie groups is a first of all the group and secondly it is a smooth manifold which is a specific kind of geometric objects. The circle and the sphere are example of smooth manifolds. A circle has a continuous group of symmetries. You can rotate the circle an arbitrarily small amount and it looks the same. Finally, we can say that A Lie group is a group of symmetries where the symmetries are continuous.
[1] Adams, John Frank., Lectures on Lie Groups, Chicago Lectures in Mathematics, Chicago: Univ. of Chicago Press, ISBN 978-0-226-00527-0, MR 0252560, (1969).
[2] Bäuerle, G.G.A; de Kerf, E.A.; ten Kroode, A. P. E., A. van Groesen; E.M. de Jager (eds.)., Finite and infinite dimensional Lie algebras and their application in physics, Studies in mathematical physics. 7. North-Holland. ISBN 978-0-444-82836-1 – via ScienceDirect, (1997).
[3] Borel, Armand ., Essays in the history of Lie groups and algebraic groups, History of Mathematics, 21, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-0288-5, MR 1847105, (2001).
[4] Bourbaki, Nicolas., Elements of mathematics: Lie groups and Lie algebras. Chapters 1–3 ISBN 3-540-64242-0, Chapters 4–6 ISBN 3-540-42650-7, Chapters 7–9 ISBN 3-540-43405-4
[5] Chevalley, Claude ., Theory of Lie groups, Princeton: Princeton University Press, ISBN 978-0-691-04990-8, (1946).
[6] P. M. Cohn., Lie Groups, Cambridge Tracts in Mathematical Physics, (1957).
[7] J. L. Coolidge., A History of Geometrical Methods, pp 304–17, Oxford University Press (Dover Publications 2003), (1940).
[8] Fulton, William; Harris, Joe., Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103., (1991).
[9] Hall, Brian C., Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, (2015).
[10] F. Reese Harvey ., Spinors and calibrations, Academic Press, ISBN 0-12-329650-1, (1990).
[11] Hawkins, Thomas ., Emergence of the theory of Lie groups, Sources and Studies in the History of Mathematics and Physical Sciences, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-1202-7, ISBN 978-0-387-98963-1, MR 1771134 Borel's review, (2000).
[12] Helgason, Sigurdur., Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, Providence, R.I.: American Mathematical Society, doi:10.1090/gsm/034, ISBN 978-0-8218-2848-9, MR 1834454, (2001).
[13] Knapp, Anthony W., Lie Groups Beyond an Introduction, Progress in Mathematics, 140 (2nd ed.), Boston: Birkhäuser, ISBN 978-0-8176-4259- 4, (2002).
[14] T. Kobayashi and T. Oshima., Lie groups and Lie algebras I, Iwanami, (in Japanese), (1999).
[15] Nijenhuis, Albert ., Review: Lie groups, by P. M. Cohn, Bulletin of the American Mathematical Society. doi:10.1090/s0002-9904-1959-10358- x, 65 (6) (1959) 338–341.
[16] Rossmann, Wulf., Lie Groups: An Introduction Through Linear Groups, Oxford Graduate Texts in Mathematics, Oxford University Press, ISBN 978-0-19-859683-7, The 2003 reprint corrects several typographical mistakes, (2001).
[17] Sattinger, David H.; Weaver, O. L., Lie groups and algebras with applications to physics, geometry, and mechanics. Springer - Verlag. doi:10.1007/978-1-4757-1910-9, ISBN 978-3-540-96240-3. MR 0835009, (1986).
[18] Serre, Jean-Pierre ., Lie Algebras and Lie Groups: 1964 Lectures given at Harvard University, Lecture notes in mathematics, 1500, Springer, ISBN 978-3-540-55008-2, (1965).
[19] Stillwell, John., Naive Lie Theory. Undergraduate Texts in Mathematics. Springer. doi:10.1007/978-0-387-78214-0. ISBN 978-0387782140, (2008).
[20] Heldermann Verlag Journal of Lie Theory
[21] Warner, Frank W., Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, 94, New York Berlin Heidelberg: Springer-Verlag, doi:10.1007/978-1-4757-1799-0, ISBN 978-0-387-90894-6, MR 0722297, (1983).
[22] Steeb, Willi-Hans., Continuous Symmetries, Lie algebras, Differential Equations and Computer Algebra: second edition, World Scientific Publishing, doi:10.1142/6515, ISBN 978-981-270-809-0, MR 2382250, (2007).
[23] Lie Groups, Representation Theory and Symmetric Spaces Wolfgang Ziller, Vorlesung, (2010).
Mukesh Kumar Choudhary, Dr. S. Biswas, "Basic Concept of Lie Groups," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 4, pp. 62-66, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I4P509