Basic Concept of Lie Groups

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2021 by IJMTT Journal
Volume-67 Issue-4
Year of Publication : 2021
Authors : Mukesh Kumar Choudhary, Dr. S. Biswas
  10.14445/22315373/IJMTT-V67I4P509

MLA

MLA Style: Mukesh Kumar Choudhary, Dr. S. Biswas  "Basic Concept of Lie Groups" International Journal of Mathematics Trends and Technology 67.4 (2021):62-66. 

APA Style: Mukesh Kumar Choudhary, Dr. S. Biswas(2021). Basic Concept of Lie Groups International Journal of Mathematics Trends and Technology, 62-66.

Abstract
Lie groups is an intersection of two fundamental fields of mathematics: algebra and geometry. Lie groups is a first of all the group and secondly it is a smooth manifold which is a specific kind of geometric objects. The circle and the sphere are example of smooth manifolds. A circle has a continuous group of symmetries. You can rotate the circle an arbitrarily small amount and it looks the same. Finally, we can say that A Lie group is a group of symmetries where the symmetries are continuous.

Reference

[1] Adams, John Frank., Lectures on Lie Groups, Chicago Lectures in Mathematics, Chicago: Univ. of Chicago Press, ISBN 978-0-226-00527-0, MR 0252560, (1969).
[2] Bäuerle, G.G.A; de Kerf, E.A.; ten Kroode, A. P. E., A. van Groesen; E.M. de Jager (eds.)., Finite and infinite dimensional Lie algebras and their application in physics, Studies in mathematical physics. 7. North-Holland. ISBN 978-0-444-82836-1 – via ScienceDirect, (1997).
[3] Borel, Armand ., Essays in the history of Lie groups and algebraic groups, History of Mathematics, 21, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-0288-5, MR 1847105, (2001).
[4] Bourbaki, Nicolas., Elements of mathematics: Lie groups and Lie algebras. Chapters 1–3 ISBN 3-540-64242-0, Chapters 4–6 ISBN 3-540-42650-7, Chapters 7–9 ISBN 3-540-43405-4
[5] Chevalley, Claude ., Theory of Lie groups, Princeton: Princeton University Press, ISBN 978-0-691-04990-8, (1946).
[6] P. M. Cohn., Lie Groups, Cambridge Tracts in Mathematical Physics, (1957).
[7] J. L. Coolidge., A History of Geometrical Methods, pp 304–17, Oxford University Press (Dover Publications 2003), (1940).
[8] Fulton, William; Harris, Joe., Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103., (1991).
[9] Hall, Brian C., Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, 222 (2nd ed.), Springer, doi:10.1007/978-3-319-13467-3, ISBN 978-3319134666, (2015).
[10] F. Reese Harvey ., Spinors and calibrations, Academic Press, ISBN 0-12-329650-1, (1990).
[11] Hawkins, Thomas ., Emergence of the theory of Lie groups, Sources and Studies in the History of Mathematics and Physical Sciences, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-1202-7, ISBN 978-0-387-98963-1, MR 1771134 Borel's review, (2000).
[12] Helgason, Sigurdur., Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, Providence, R.I.: American Mathematical Society, doi:10.1090/gsm/034, ISBN 978-0-8218-2848-9, MR 1834454, (2001).
[13] Knapp, Anthony W., Lie Groups Beyond an Introduction, Progress in Mathematics, 140 (2nd ed.), Boston: Birkhäuser, ISBN 978-0-8176-4259- 4, (2002).
[14] T. Kobayashi and T. Oshima., Lie groups and Lie algebras I, Iwanami, (in Japanese), (1999).
[15] Nijenhuis, Albert ., Review: Lie groups, by P. M. Cohn, Bulletin of the American Mathematical Society. doi:10.1090/s0002-9904-1959-10358- x, 65 (6) (1959) 338–341.
[16] Rossmann, Wulf., Lie Groups: An Introduction Through Linear Groups, Oxford Graduate Texts in Mathematics, Oxford University Press, ISBN 978-0-19-859683-7, The 2003 reprint corrects several typographical mistakes, (2001).
[17] Sattinger, David H.; Weaver, O. L., Lie groups and algebras with applications to physics, geometry, and mechanics. Springer - Verlag. doi:10.1007/978-1-4757-1910-9, ISBN 978-3-540-96240-3. MR 0835009, (1986).
[18] Serre, Jean-Pierre ., Lie Algebras and Lie Groups: 1964 Lectures given at Harvard University, Lecture notes in mathematics, 1500, Springer, ISBN 978-3-540-55008-2, (1965).
[19] Stillwell, John., Naive Lie Theory. Undergraduate Texts in Mathematics. Springer. doi:10.1007/978-0-387-78214-0. ISBN 978-0387782140, (2008).
[20] Heldermann Verlag Journal of Lie Theory
[21] Warner, Frank W., Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, 94, New York Berlin Heidelberg: Springer-Verlag, doi:10.1007/978-1-4757-1799-0, ISBN 978-0-387-90894-6, MR 0722297, (1983).
[22] Steeb, Willi-Hans., Continuous Symmetries, Lie algebras, Differential Equations and Computer Algebra: second edition, World Scientific Publishing, doi:10.1142/6515, ISBN 978-981-270-809-0, MR 2382250, (2007).
[23] Lie Groups, Representation Theory and Symmetric Spaces Wolfgang Ziller, Vorlesung, (2010).

Keywords : History of lie group, Definition of Lie group, Classification of Lie group, Importance of Lie groups