Certain Subclasses of Bi-Univalent and Meromorphic Functions Associated With Al-Oboudi Differential Operator

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2021 by IJMTT Journal
Volume-67 Issue-5
Year of Publication : 2021
Authors : D. D. Bobalade, N. D. Sangle
  10.14445/22315373/IJMTT-V67I5P509

MLA

MLA Style: D. D. Bobalade, N. D. Sangle "Certain Subclasses of Bi-Univalent and Meromorphic Functions Associated With Al-Oboudi Differential Operator" International Journal of Mathematics Trends and Technology 67.5 (2021):86-89. 

APA Style: D. D. Bobalade, N. D. Sangle(2021). Certain Subclasses of Bi-Univalent and Meromorphic Functions Associated With Al-Oboudi Differential Operator International Journal of Mathematics Trends and Technology, 86-89.

Abstract
In this paper, we introduce two new subclasses of meromorphic and bi-univalent functions defined by Al-Oboudi differential operator on Δ={z ε C:1 < |z| < ∞ }. Also we obtain bounds of coefficients |b0| and |b1| for functions in this subclasses.

Reference

[1] F. M. Ai-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. of Math. and Math. Sci., 27 (2004) 1429-1436.
[2] P. L. Duren, Univalent functions , Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, (1983).
[3] Saideh Hajiparvaneh and Ahmad Zireh, Coefficients estimates for certain subclass of meromorphic and bi-univalent functions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 681 (2019) 654-662.
[4] S. A. Halim, S. G. Hamidi and V. Ravichandran, Coefficient estimates for meromorphic bi-univalent functions, arXiv:1108.4089, preprint (2011).
[5] Y .Kubota, Coefficients of meromorphic univalent functions, Kodai Math. Sem. Rep., 282(3) (1976) 253-261.
[6] H. Orhan, N. Mangesh and V. K. Balaji, Initial coefficient bounds for certain subclasses of meromorphic bi-univalent functions, Asian European J.Math., 7 (1) (2014) 1-9. DOI: 10.1142/S1793557114500053.
[7] Amol B. Patil and Uday H. Naik, Coefficient estimates for a new subclass of meromorphic bi-univalent functions defined by Al-Oboudi differential operator, Global Journal of Pure and Applied Mathematics, 139 (2017) 4405-4414.
[8] C. Pommerenke, Univalent Functions, Vandenhoeck Ruprecht, G¨ottingen, 1975.
[9] M. Schiffer, Surun probleme dextremum de la representation conforme, Bull. Soc. Math. France, 66 (1938) 48-55.
[10] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(10) (2010) 1188–1192.
[11] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218(23) (2012) 11461–11465.

Keywords : Al-Oboudi differential operator, Bi-univalent functions, Coefficient bounds, Meromorphic Bi-univalent functions.