Volume 67 | Issue 5 | Year 2021 | Article Id. IJMTT-V67I5P515 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I5P515
Ngiangia Alalibo, Orukari Mercy, Amadi Okeychukwu, Nwabuzor Peter, "Onset of Transition to Non-Newtonian MHD Chemically Reacting Couette Copper Nanofluid Flow in a Radiative Porous Medium," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 5, pp. 126-149, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I5P515
[1] S. U. S Choi, Enhancing thermal conductivity of fluids with nanoparticle, in: D.A. Siginer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows. ASME FED.66 (1995), 99–105
[2] K. V. Wong, O. Deleon. Applications of nanofluids: Current and future, Advances in Mechanical Engineering 2 (2010), 519659
[3] A. K Singh, G. Harinadha, N. Kishore, P. Barua, T. Jain, P. Joshi. Mixed Convective Heat Transfer Phenomena of Circular Cylinders to Non-Newtinian Nanofluids Flowing Upward. Procedia Engineering 127 (2015), 118-125
[4] P. W Bearman, M. M Zdravkovich, Flow around a circular cylinder near a plane boundary, Journal of Fluid Mechanics 89 (1978), 33-47
[5] S. Taniguchi, K. Miyakochi, Fluctuating fluid forces acting on a circular cylinder and interference with a plane wall, Experiments in Fluids 9 (1990), 197-204
[6] C. F Lange, F. Durst, M. Breuer, Momentum and heat transfer from cylinders in laminar cross flow at 200Re104 , International Journal of Heat and Mass Transfer 410 (1998), 3409-3430
[7] M. Narahari, N. Alaparthi, I. Pop, Exact analysis of the transient free convection flow of nanofluids between two vertical parallel plates in the presence of radiation, (2017) https://doi.org/10.1002/cjce.22872
[8] W. A. Azhar, D. Vieru, C. Fetecau, Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and hear source, Physics of Fluids 29 (2017), 082001
[9] A. K. Santra, S. Sen, N, Chakraborthy, Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates, International Journal of Thermal Science 48 (2009), 391-400
[10] S. Sandip, G. Suvankar, D. Amaresh, Buoyancy driven flow and heat transfer of nanofluids past a square cylinder in vertically upward flow, International Journal of Heat and Mass Transfer 59 (2013), 433-450
[11] N. Ahmed, N. A. Shah, B. Ahmad, S. I. A. Shah, S. Ulhaq, M. Rahimi-Gorji, Transient MHD convective flow of fractional nanofluid between vertical plates, Journal of Applied Computational Mechanics 5(4) (2019) 592-602
[12] M. Turkyilmazoglu, Analytical solutions of single and multi phase models for the condessation of nanofluid film flow and heat transfer, European Journal of Mechanics-B/Fluids 53 (2015) 272-277
[13] P. Loganathan, P. N. Chand, P. Ganesan, Transient natural convective flow of a nanofluid past a vertical plate in the presence of heat generation, Journal of Applied Mechanics and Technology Physics 56 (2015), 433-442
[14] A. Hajizadeh, N. A. Shah, S. I. A. Shah, I. L. Animasaun, M. Rahimi-Gorji, I. M. Alarifi, Free convection flow of nanofluids between two vertical plates with thermal damp flux, Journal of Molecular Liquids 289 (2019), 110964
[15] Y. R. O. Reddy, M. S. Reddy, P. S. Reddy, A. J. Chamkha, Effect of Brownian motion and thermophoresis on heat and mass transfer flow over a horizontal circular cylinder filled with nanofluid, Journal of nanofluids 6(4) (2017), 702-710
[16] G. Sucharitha, S. Sreenadh, P. Lakshminarayana, K. Sushma, Brownian motion and thermophoresis effects on peristaltic slip flow of a MHD nanofluid in a symmetric/asymmetric channel, Materials Science and Engineering 263 (2017), 062025
[17] R. Kandasamy, I. Muhaimin, R. Mohamad, Thermophoresis and Brownianmotion effects on MHD boundary-layer flow of a nanofluid in the presence of thermal stratification due to solar radiation, Int. J. Mech. Sci. 70 (2013) 146–154, https://doi.org/10.1016/j.ijmecsci.2013.03.007.
[18] N. Anbuchezhian, K. Srinivasan, K. Chandrasekaran, R. Kandasamy, Thermophoresis and Brownian motion effects on boundary layer flow of nanofluid in presence of thermal stratification due to solar energy, Appl. Math. Mech. 33 (6) (2012) 765–780, https://doi.org/10.1007/s10483-012-1585-8.
[19] Y. Xuan, Q. Li, and W. Hu, Aggregation structure and thermal conductivity of nanofluids. AIChE Journal, (2003). 49(4), 1038–1043
[20] S. K. Das, N. Putta, P.Thiesen, and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids. ASME Transnational Journal of Heat Transfer, (2003). 125, 567–574
[21] D. H. Kumar, H. E.Patel, V. R. R. Kumar, T Sundararajan, T. Pradeep, and S. K. Das, Model for heat conduction in nanofluids. Physical Review Letters, (2004). 93(14): 144,301–1–144,301–4
[22] P. Bhattacharya, S. K. Saha, A. Yadav, P. E. Phelan, and R. S. Prasher, Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. Journal of Applied Physics, (2004). 95(11): 6492–6494
[23] N. B. Reddy, T. Poornima, P. Sreenivasulu, Radiative heat transfer effect on MHD slip flow of dissipating nanofluid past an exponential stretching porous sheet, International Journal of Pure and Applied Mathematics 109 (9) (2016) 134–142
[24] P. Sreenivasulu, T. Poornima, N. Bhaskar Reddy, Thermal radiation effects on MHD boundary layer slip flow past a permeable exponential stretching sheet in the presence of joule heating and viscous dissipation, Journal of Applied Fluid Mechanics 9(1) (2016) 267–278.
[25] M. Tamoor, MHD convective boundary layer slip flow and heat transfer over nonlinearly stretching cylinder embedded in a thermally stratified medium, Results in Physics 7 (2017) 4247–4252, https://doi.org/10.1016/j.rinp.2017.07.064.
[26] S. K. Parida, S. Panda, B. R. Rout, MHD boundary layer slip flow and radiative nonlinear heat transfer over a flat plate with variable fluid properties and thermophoresis, Alexandria Engineering Journal 54 (4) (2015) 941–953, https://doi.org/10.1016/j.aej.2015.08.007.
[27] M. K. Nayak , Shaw S., Chamkha A.J, Impact of variable magnetic field and convective boundary condition on a stretched 3D radiative flow of Cu-H2O nanofluid, AMSE Journals-AMSE IIETA Publication-2017-Series: Modelling B; 86, 3, 2018, 658–678.
[28] Z. Abbas, M. Naveed, M. Sajid, Hydromagnetic slip flow of nanofluid over a curved stretching surface with heat generation and thermal radiation, Journal of molecular Liquids 215 (2016) 756–762
[29] B. Souayeh, M. G. Reddy, P. Sreenivasulu, T. Poornima, M. Rahimi-Gorji, I.M. Alarifi, Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle, Journal of Molecular Liquids 284 (2019) 163–174
[30] A. T. Ngiangia, M.A Orukari MHD Couette-Poiseuille Flow in a Porous Medium, Global Journal of Pure and Applied Mathematics. 9(2) (2013), 169-181
[31] A. C. Cogley, A. W. Vincenti, E. S. Giles, . Differential Approximation of a Radiative Heat Transfer. The American Institute of Aeronautics and Astronautics. 6 (1968), 551–553
[32] R. L. Hamilton, O. K. Crosser, Thermal conductivity of heterogeneous two component systems. Industrial Engineering and Chemistry Fundamentals 1(3) (1962), 187-191.
[33] J. Koo, C. Kleinstreuer, A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research, 6(6) (2004), 577–588
[34] J. Koo, C. Kleinstreuer, Laminar nanofluid flow in micro-heat sinks. International Journal of Heat and Mass Transfer, 48(13): (2005), 2652–2661
[35] A. T. Ngiangia, P. O. Nwabuzor, Investigation of Heat Transfer Characteristics of Spherical Copper and Alumina Nanoparticles in Water and Ethylene glycol Based Fluids, (Submitted)
[36] R. K, Tiwari, M. K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer. 50 (2007), 9-10.
[37] K. Asma, I. Khan, S. Sharidan, Exact solution for free convecton flow of nanofluids with ramped wall temperature. The European Physical Journal-Plus 130 (2015), 57-71.
[38] G. Aaiza, I. Khan, S. Shafie Energy transfer in mixed convection MHD flow of nanofluid containing different shapes of nanoparticles in a channel filled with saturated porous medium. Nanoscale Research Letters. 10 (490) (2015). 1-14.
[39] A.T. Ngiangia, N. N. Akaezue, Heat Transfer of Mixed Convection Electroconductivity Flow of Copper Nanofluid with Different Shapes in a Porous Micro Channel Provoked by Radiation and First Order Chemical Reaction. Asian Journal of Physical and Chemical Sciences 7(1) (2019), 1-14.
[40] B. D.Gupta, Mathematical Physics (Third Revised Edition). Viskas Publishing House PVT LTD, New Delhi (2005).
[41] M. D. Raisinghania, Advanced Differential Equations (Fourteenth Revised Edition). S.Chand and Company LTD. New Delhi (2011)