Volume 67 | Issue 6 | Year 2021 | Article Id. IJMTT-V67I6P510 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I6P510
In the present work, we investigate the Fekete-Szego inequalities for certain classes of analytic functions by using (p,q)-Ruscheweyh derivative and also the estimates on the coefficients for second and third coefficients of these classes are discussed.
[1] A. Cetinkaya, Kahramaner, Y. Polatoglu, Fekete-Szego inequalities for q-starlike and q-convex functions, Acta Universitatis Apulensis 53 (2018) 55-64.
[2] Nusral Raza, Eman S. A. Abujarad, Gautham Srivastava, H.M. Srivastava and Mohammed H.Abu Jarad, Fekete-Szego inequality for classes of (p,q)- starlike and (p,q)-convex functions, arXiv: 1912.05298v1[math-GM] (2019).
[3] S. D. Bernardi, Convex and Starlike univalent functions, Trans. Amer. Math.Soc, 135 (2016) 429-446.
[4] S. S.Miller and P.T.Mocanu, Differential subordinations theory and applications, CRC Press (2000).
[5] T. M. Seoudy, M. K. Aouf , Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J.Math.Inequalities 10(1)(2016) 135-145.
[6] Ugur Duran, Mehmet Acikgoz and Serkan Araci, A study on some new results arising from (p,q)-calculus, preprints.org(2018).
[7] V. Ravichandran, Yasar Polatoglu, Metin Bolcal and arsu sen, Certain subclasses of starlike and convex functions of complex order, Hacettepe J. Math.Stat 34 (2005) 9-15.
[8] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in proceedings of the conference on complex analysis, Tianjin (1992) 157-169.
[9] S.Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math.Soci., 49(1975) 109-115.
P. Nandini, M.Ruby Salestina, S.Latha, "Fekete-Szego Inequality for Certain Classes of Analytic Functions using (p,q)-Ruscheweyh Derivative," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 6, pp. 81-89, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I6P510