Volume 67 | Issue 6 | Year 2021 | Article Id. IJMTT-V67I6P512 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I6P512
Dhritikesh Chakrabarty, "Four Formulations of Average Derived from Pythagorean Means," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 6, pp. 97-118, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I6P512
[1] Bakker Arthur., The early history of average values and implications for education, Journal of Statistics Education, 11(1)(2003) 17 ‒ 26.
[2] Christoph Riedweg ., Pythagoras: his life, teaching, and influence (translated by Steven Rendall in collaboration with Christoph Riedweg and Andreas Schatzmann, Ithaca), ISBN 0-8014-4240-0, Cornell University Press., (2005).
[3] David A. Cox., The Arithmetic-Geometric Mean of Gauss”, In J.L. Berggren; Jonathan M. Borwein; Peter Borwein (eds.). Pi: A Source Book. Springer. 481. ISBN 978-0-387-20571-7 , (first published in L'Enseignement Mathématique, t. 30(1984)(2004) 275 – 330).
[4] David W. Cantrell (……): “Pythagorean Means”, Math World.
[5] Dhritikesh Chakrabarty., Determination of Parameter from Observations Composed of Itself and Errors, International Journal of Engineering Science and Innovative Technology, 3(2)(2014) 304 – 311. Available at https://www.researchgate.net/profile/Dhritikesh_Chakrabarty/stats .
[6] Dhritikesh Chakrabarty., Analysis of Errors Associated to Observations of Measurement Type, International Journal of Electronics and Applied Research, 1(1)(2014)15 – 28. Available at https://www.researchgate.net/profile/Dhritikesh_Chakrabarty/stats .
[7] Dhritikesh Chakrabarty ., Observation Composed of a Parameter and Random Error: An Analytical Method of Determining the Parameter”, International Journal of Electronics and Applied Research, 1(2)(2014) 20 – 38. Available at http://eses.net.in/online_journal.html .
[8] Dhritikesh Chakrabarty., Observation Consisting of Parameter and Error: Determination of Parameter, Proceedings of the World Congress on Engineering, 2015, ISBN: 978-988-14047-0-1, ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online) (2015). Available at https://www.researchgate.net/profile/Dhritikesh_Chakrabarty/stats .
[9] Dhritikesh Chakrabarty., Observation Consisting of Parameter and Error: Determination of Parameter," Lecture Notes in Engineering and Computer Science (ISBN: 978-988-14047-0-1), London, 2015, (2015) 680 ‒ 684. Available at https://www.researchgate.net/profile/Dhritikesh_Chakrabarty/stats.
[10] Dhritikesh Chakrabarty., Central Tendency of Annual Extremum of Surface Air Temperature at Guwahati, J. Chem. Bio. Phy. Sci. (E- ISSN : 2249 – 1929), Sec. C, 5(3) (2015) 2863 – 2877. Available at: www.jcbsc.org.
[11] Dhritikesh Chakrabarty., Central Tendency of Annual Extremum of Surface Air Temperature at Guwahati Based on Midrange and Median, J. Chem. Bio. Phy. Sci. (E- ISSN : 2249 –1929), Sec. D, 5(3)(2015) 3193 – 3204. Available at: www.jcbsc.org.
[12] Dhritikesh Chakrabarty., Observation Composed of a Parameter and Random Error: Determining the Parameter as Stable Mid Range, International Journal of Electronics and Applied Research (ISSN : 2395 – 0064), 2(1)(2015) 35 – 47. Available at http://eses.net.in/online_journal.html .
[13] Dhritikesh Chakrabarty., A Method of Finding Appropriate value of Parameter from Observation Containing Itself and Random Error”, Indian Journal of Scientific Research and Technology, (E-ISSN: 2321-9262), 3(4)(2015) 14 – 21. Available at https://www.researchgate.net/profile/Dhritikesh_Chakrabarty/stats
[14] Dhritikesh Chakrabarty., Theoretical Model Modified For Observed Data: Error Estimation Associated To Parameter, International Journal of Electronics and Applied Research (ISSN : 2395 – 0064), 2(2)(2015) 29 – 45. Available at http://eses.net.in/online_journal.html .
[15] Dhritikesh Chakrabarty., Impact of Error Contained in Observed Data on Theoretical Model: Study of Some Important Situations, International Journal of Advanced Research in Science, Engineering and Technology, (ISSN : 2350 – 0328), 3(1)(2016) 1255 – 1265. Available at https://www.researchgate.net/profile/Dhritikesh_Chakrabarty/stats .
[16] Dhritikesh Chakrabarty ., Pythagorean Mean: Concept behind the Averages and Lot of Measures of Characteristics of Data, NaSAEAST- 2016, Abstract ID: CMAST_NaSAEAST (Inv)-1601)., (2016) Available at https://www.researchgate.net/profile/Dhritikesh_Chakrabarty/stats .
[17] Dhritikesh Chakrabarty., Objectives and Philosophy behind the Construction of Different Types of Measures of Average, NaSAEAST- 2017, Abstract ID: (2017) CMAST_NaSAEAST (Inv)- 1701), Available at https://www.researchgate.net/profile/Dhritikesh_Chakrabarty/stats .
[18] Dhritikesh Chakrabarty., Theoretical Model and Model Satisfied by Observed Data: One Pair of Related Variables”, International Journal of Advanced Research in Science, Engineering and Technology, 3(2)(2017) 1527 – 1534, Available at www.ijarset.com .
[19] Dhritikesh Chakrabarty., Variable(s) Connected by Theoretical Model and Model for Respective Observed Data, FSDM2017, Abstract ID: FSDM2220, (2017). Available at https://www.researchgate.net/profile/Dhritikesh_Chakrabarty/stats.
[20] Dhritikesh Chakrabarty, Numerical Data Containing One Parameter and Random Error: Evaluation of the Parameter by Convergence of Statistic, International Journal of Electronics and Applied Research, 4(2)(2017) 59 – 73. Available at http://eses.net.in/online_journal.html .
[21] Dhritikesh Chakrabarty., Observed Data Containing One Parameter and Random Error: Evaluation of the Parameter Applying Pythagorean Mean, International Journal of Electronics and Applied Research, 5(1)(2018) 32 – 45. Available at http://eses.net.in/online_journal.html .
[22] Dhritikesh Chakrabarty ., Derivation of Some Formulations of Average from One Technique of Construction of Mean, American Journal of Mathematical and Computational Sciences, 3(3)(2018) 62 – 68. Available at http://www.aascit.org/journal/ajmcs.
[23] Dhritikesh Chakrabarty., One Generalized Definition of Average: Derivation of Formulations of Various Means, Journal of Environmental Science, Computer Science and Engineering & Technology, Section C, (E-ISSN: 2278 – 179 X), 7(3)(2018) 212 – 225. Available at www.jecet.org.
[24] Dhritikesh Chakrabarty., fH -Mean: One Generalized Definition of Average”, Journal of Environmental Science, Computer Science and Engineering & Technology, Section C, 7(4)(2018) 301 – 314. Available at www.jecet.org .
[25] Dhritikesh Chakrabarty., Generalized fG - Mean: Derivation of Various Formulations of Average, American Journal of Computation, Communication and Control, 5(3) (2018) 101 – 108. Available at http://www.aascit.org/journal/ajmcs .
[26] Dhritikesh Chakrabarty., General Technique of Defining Average, NaSAEAST- 2018, Abstract ID: CMAST_NaSAEAST -1801 (I)(2018), Available at https://www.researchgate.net/profile/Dhritikesh_Chakrabarty/stats .
[27] Dhritikesh Chakrabarty., Observed Data Containing One Parameter and Random Error: Probabilistic Evaluation of Parameter by Pythagorean Mean, International Journal of Electronics and Applied Research, 6(1)(2019) 24 – 40. Available at http://eses.net.in/online_journal.html .
[28] Dhritikesh Chakrabarty., One Definition of Generalized fG - Mean: Derivation of Various Formulations of Average, Journal of Environmental Science, Computer Science and Engineering & Technology, Section C, (E- ISSN : 2278 – 179 X), 8(2)(2019) 051 – 066. Available at www.jecet.org.
[29] Dhritikesh Chakrabarty ., One General Method of Defining Average: Derivation of Definitions/Formulations of Various Means, Journal of Environmental Science, Computer Science and Engineering & Technology, Section C, (E-ISSN : 2278 – 179 X), 8(4)(2019) 327 – 338. Available at www.jecet.org .
[30] Dhritikesh Chakrabarty., A General Method of Defining Average of Function of a Set of Values, Aryabhatta Journal of Mathematics & Informatics {ISSN (Print) : 0975-7139, ISSN (Online) : 2394-9309}, 11(2)(2019) 269 – 284. Available at www.abjni.com .
[31] Dhritikesh Chakrabarty., Pythagorean Geometric Mean: Measure of Relative Change in a Group of Variables, NaSAEAST- 2019, Abstract ID: CMAST_NaSAEAST -1902 (I). Available at (2019) , https://www.researchgate.net/profile/Dhritikesh_Chakrabarty/stats .
[32] Dhritikesh Chakrabarty ., Definition / Formulation of Average from First Principle, Journal of Environmental Science, Computer Science and Engineering & Technology, Section C, (E-ISSN : 2278 – 179 X), 9(2)(2020) 151 – 163. Available at www.jecet.org .
[33] Hazewinkel, Michiel ed., Arithmetic–geometric mean process, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4 ., (2001).
[34] Foster D. M. E. and Phillips G. M., The Arithmetic-Harmonic Mean, Journal of American Mathematical Society, 42(165)183-191.
[35] Kolmogorov Andrey., On the Notion of Mean, in “Mathematics and Mechanics., (Kluwer 1991), (1930)144 – 146.
[36] Kolmogorov Andrey., Grundbegriffe der Wahrscheinlichkeitsrechnung (in German), Berlin: Julius Springer., (1933).
[37] Miguel de Carvalho., Mean, what do you Mean?”, The American Statistician, 70(2016) 764 ‒ 776.
[38] Plackett, R. L., Studies in the History of Probability and Statistics: VII. The Principle of the Arithmetic Mean., Biometrika. 45 (1/2)(1958) 130–135. doi:10.2307/2333051. JSTOR 2333051.
[39] Youschkevitch A. P., A. N. Kolmogorov: Historian and philosopher of mathematics on the occasion of his 80th birfhday, Historia Mathematica, 10(4)(1983) 383 – 395.
[40] Weir, Alan J.,The Convergence Theorems, Lebesgue Integration and Measure, Cambridge: Cambridge University Press. 93–118. ISBN 0-521-08728-7.
[41] Weisstein, Eric W. ( )., Harmonic-Geometric Mean., From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Harmonic-GeometricMean.html.
[42] Weisberg H. F., Central Tendency and Variability, Sage University Paper Series on Quantitative Applications in the Social Sciences, ISBN 0-8039-4007-6 (1992) 2.
[43] Williams R. B. G., Measures of Central Tendency, Introduction to Statistics for Geographers and Earth Scientist, Softcover ISBN978-0-333-35275-5, eBook ISBN978-1-349-06815-9 , Palgrave, London, (1984) 51 – 60.