Coefficient Estimates on Laguerre Polynomials Involving λ-Pseudo Starlike Function

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2021 by IJMTT Journal
Volume-67 Issue-7
Year of Publication : 2021
Authors : P. Lokesh
  10.14445/22315373/IJMTT-V67I7P501

MLA

MLA Style: P. Lokesh  "Coefficient Estimates on Laguerre Polynomials Involving λ-Pseudo Starlike Function" International Journal of Mathematics Trends and Technology 67.7 (2021):1-8. 

APA Style: P. Lokesh(2021). Coefficient Estimates on Laguerre Polynomials Involving λ-Pseudo Starlike Function International Journal of Mathematics Trends and Technology, 1-8.

Abstract
In this investigation, we introduce a new subclass of univalent, Sakaguchi and λ- pseudo starlike functions LP(λ, μ, b) by means of the generalized Laguerre polynomials defined in the open unit discΩ. Coefficient bounds and Fekete-Szego inequality to the said subclass are obtained.

Reference

[1] K.O. Babalola, On λ pseudo-starlike functions, J. Class. Anal., 3(2) (2013) 137 – 147.
[2] P. L. Duren , Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, (1983).
[3] B.A. Frasin , Coefficient inequalities for certain classes of Sakaguchi Type functions, Int. J. of Nonlinear Science, 10(2) (2010) 206-211.
[4] B. A. Frasin and M. K. Aouf , New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011) 1569–1573.
[5] S. P. Goyal and P. Goswami , Estimate for initial Maclaurin coefficients of bi-univalent Functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20, (2012) 179-182.
[6] N. N. Lebedev, Special Functions and Their Applications, Translated from the revised Russian edition (Moscow, 1963) by Richard A. Silverman. Prentice-Hall, Englewood Cliffs, N.J., (1965).
[7] Netanyahu, E., The minimal distance of the image boundary from the origin and the Second coefficient of a univalent function in|Z|<1, Arch. Rational Mech. Anal. 32, (1969) 100- 112,
[8] R. Singh , On Bazilevic functions, Proc. Amer. Math. Soc., 38(2) (1973) 261–271.
[9] H. M. Srivastava and D. Bansal , Coefficient estimates for a subclass of analytic and Bi univalent functions, J. Egyptian Math. Soc., 23 (2015) 242–246..
[10] H. M. Srivastava, S. S. Eker and R. M. Ali , Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015) 1839–1845.
[11] H. M. Srivastava, S. Gaboury and F. Ghanim , Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Africa Math., 28 (2017) 693-706.
[12] Trailokya Panigrahi, Janusz Solol, Generalized Laguerre Polynomial Bounds for subclass of bi- univalent functions, Jordan Journal of Mathematics and Statistics,14(1) (2021) 127 – 140.

Keywords : Univalent functions, Sakaguchi function, λ-pseudo star like function, Laguerre polynomials, Subordination.