Five Dimensional Inflationary Universes in the Saez-Ballester Theory

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2021 by IJMTT Journal
Volume-67 Issue-7
Year of Publication : 2021
Authors : D. R. Manekar, S. R. Bhoyar, Hemant Kumar
  10.14445/22315373/IJMTT-V67I7P509

MLA

MLA Style: D. R. Manekar, S. R. Bhoyar, Hemant Kumar  "Five Dimensional Inflationary Universes in the Saez-Ballester Theory" International Journal of Mathematics Trends and Technology 67.7 (2021):71-78. 

APA Style: D. R. Manekar, S. R. Bhoyar, Hemant Kumar(2021). Five Dimensional Inflationary Universes in the Saez-Ballester Theory International Journal of Mathematics Trends and Technology, 71-78.

Abstract
In the current work our point is to build five dimensional inflationary Universes in the framework of Saez-Ballester Theory of Gravitation (SBTG). For construction of the model of the Universe we have consider a five dimensional Bianchi Type-V space-time.Some physical and kinematical parameters of the models have been graphically described.

Reference

[1] A. H. Guth., Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D, 23(2) (1981) 347–356, doi: 10.1103/PhysRevD.23.347.
[2] A. D. Linde., A New Inflationary Universe Scenario: A Possible Solution Of The Horizon, Flatness, Homogeneity, Isotropy And Primordial Monopole Problems, Phys. Lett. A, 46(2) (1982) 55.
[3] D. La and P. J. Steinhardt., Extended Inflationary Cosmology, Phys. Rev. Lett., 62(4) (1989) 376–378, , doi: 10.1103/PhysRevLett.62.376.
[4] J. E. Lidsey., The scalar field as dynamical, 5 (1991) 42–46,.
[5] R. M. Wald., Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant, Phys. Rev. D, 28(8) (1983) 2118–2120, doi: 10.1103/PhysRevD.28.2118.
[6] J. D. Barrow., S t r i n g - d r i v e n inflationary a n d d e f l a t i o n a r y cosmological models., Nucl. Phys. B, 310 (1988) 743–763,.
[7] A. Feinstein and J. Ibanez., Exact inhomogeneous scalar field universes, Class. Quantum Gravity, 10(12) (1993) doi: 10.1088/0264-9381/10/12/003.
[8] V. Méndez., Exact scalar field cosmologies with a fluid, Class. Quantum Gravity, 13(12) (1996) 3229–3239, , doi: 10.1088/0264-9381/13/12/013.
[9] B. C. Paul., Exact scalar field cosmologies in a higher derivative theory, Pramana - J. Phys., 53(5) (1999) 833–841, doi: 10.1007/s12043-999-0116-6.
[10] V. Faraoni., A new solution for inflation, Am. J. Phys., 69(3) (2001) 372–376, doi: 10.1119/1.1290250.
[11] W. F. Wang., Exact inflationary solution in string-motivated scalar field cosmology, Chinese Phys. Lett., 18(1) (2001),151–153, doi: 10.1088/0256-307X/18/1/353.
[12] C. P. Singh and S. Kumar., Bianchi Type-II inflationary models with constant deceleration parameter in general relativity,” Pramana - J. Phys., 68(5) (2007) 707–720, doi: 10.1007/s12043-007-0087-4.
[13] K. Lin and S. Z. Yang., Exact scalar field inflationary solution in rainbow universe, Int. J. Theor. Phys., vol. 47, no. 11, (2008) 2991–2996,doi: 10.1007/s10773-008-9733-y.
[14] D. R. K. Reddy, R. L. Naidu, and S. A. Rao., Axially symmetric inflationary universe in general relativity, Int. J. Theor. Phys., vol. 47, no. 4, (2008) 1016–1020 doi: 10.1007/s10773-007-9529-5.
[15] D. R. K. Reddy., Bianchi type-V inflationary universe in general relativity, Int. J. Theor. Phys., 48(7) (2009) 2036–2040. doi: 10.1007/s10773-009-9979-z.
[16] R. Allahverdi, R. Brandenberger, F. Y. Cyr-Racine, and A. Mazumdar., Reheating in inflationary cosmology: Theory and applications, Annu. Rev. Nucl. Part. Sci., 60 (2010) 27–51 doi: 10.1146/annurev.nucl.012809.104511.
[17] K. S. Adhav., Kaluza-Klein Inflationary Universe in General Relativity, 2(11) (2011) 1828–1834.
[18] S. D. Katore, K. S. Adhav, V. G. Mete, and A. Y. Shaikh., A higher-dimensional Bianchi type-I inflationary Universe in general relativity, Pramana - J. Phys., 78(1) (2012) 101–107. doi: 10.1007/s12043-011-0208-y.
[19] E. O. Pozdeeva and S. Y. Vernov., Stable exact cosmological solutions in induced gravity models, AIP Conf. Proc., vol. 1606, no. February, (2014) 48–58.doi: 10.1063/1.4891115.
[20] T. Harko, F. S. N. Lobo, and M. K. Mak., Arbitrary scalar-field and quintessence cosmological models, Eur. Phys. J. C, vol. 74, no. 2784, (2014) 1–17. doi: 10.1140/epjc/s10052-014-2784-8.
[21] J. P. Uzan., Inflation in the standard cosmological model, Comptes Rendus Phys., 16(10) (2015) 875–890. doi: 10.1016/j.crhy.2015.08.001.
[22] S. R. Bhoyar., Non- Static Plane symmetric Scalar Field Cosmological Models in Modified Theory of Gravity., 12 (2016) 30–33
[23] S. D. Maharaj, R. Goswami, S. V. Chervon, and A. V. Nikolaev., Exact solutions for scalar field cosmology in f (R) gravity, Mod. Phys. Lett. A, 32(30) (2017), doi: 10.1142/S0217732317501644.
[24] I. V. Fomin., Exact Solutions in Friedmann Cosmology With Scalar Fields, Space, Time Fundam. Interact., 1 (2018) 31–38, , doi: 10.17238/issn2226-8812.2018.1.31-38.
[25] R. Alvarado., Exact cosmological solution of a scalar field of type +cosh in anisotropic space-time of Petrov type D, Adv. Stud. Theor. Phys., vol. 12, no. 3, (2018) 121–128, doi: 10.12988/astp.2018.825.
[26] S. V. Chervon, I. V. Fomin, and A. Beesham., The method of generating functions in exact scalar field inflationary cosmology, Eur. Phys. J. C, 78(4) (2018) 1–14 , doi: 10.1140/epjc/s10052-018-5795-z.
[27] A. Paliathanasis, G. Leon, and S. Pan., Exact solutions in Chiral cosmology, Gen. Relativ. Gravit., 51(9) (2019) 1–10, doi: 10.1007/s10714-019-2594-2.
[28] I. Fomin and S. Chervon., Exact and slow-roll solutions for exponential power-Law inflation connected with modified gravity and observational constraints., Universe, 6(11) (2020) doi: 10.3390/universe6110199.
[29] L. Poonia and S. Sharma, “Inflationary scenario in Bianchi type II space with bulk viscosity in general relativity, Ann. Rom. Soc. Cell Biol., 25(2) (2021)1223–1229.
[30] K. S. Adhav, S. D. Katore, A. S. Bansod, and P. S. Gadodia., Higher dimensional bianchi type-V universe in creation-field cosmology, Nat. Sci., 2(5) (2010) 484–488 , doi: 10.4236/ns.2010.25060.
[31] S. K. Biswal, S. K. Agarwalla, and M. C. Adhikary., Five dimensional Bianchi type-V cosmological models described by a binary mixture of perfect fluid and dark energy with Λ-term, Astrophys. Space Sci., 341(2) (2012) 645–650, doi: 10.1007/s10509-012-1040-7.
[32] D. Reddy and G. Ramesh., Five-Dimensional anisotropic Dark energy Cosmological model in the presence of Scalar-Meson fields in General relativity, Int. J. Cosmol. Astron. Astrophys., 1(2) (2019) 67–70, doi: 10.18689/ijcaa-1000116.
[33] D. Sáez and V. J. Ballester., A simple coupling with cosmological implications, Phys. Lett. A, 113(9) (1986) 467–470, doi: 10.1016/0375-9601(86)90121-0.
[34] K. S. Adhav, V. G. Mete, A. M. Pund, and R. B. Raut., Einstein-Rosen Domain Walls in Saez-Ballester Theory of Gravitation, J. Vectorial Relativ. JVR, 5 (2010) 4–26.
[35] S. D. Katore and A. Y. Shaikh., Magnetized cosmological models in bimetric theory of gravitation, Pramana - J. Phys., 67(2) (2006) 227–237, doi: 10.1007/s12043-006-0067-0.
[36] R. K. Mishra and A. Chand., Cosmological models in Sáez-Ballester theory with bilinear varying deceleration parameter, Astrophys. Space Sci., 365(4) (2020) 1–9, , doi: 10.1007/s10509-020-03790-w.

Keywords : Bianchi Type-V space time, Inflationary Universe, Saez-Ballester Theory..