Distance Polynomial, Distance Spectra And Distance Energy Of Some Edge Deleted Graphs

**MLA Style: **B. S. Durgi, Umesh Poojari, D.S.Revankar, P. R. Hampiholi "Distance Polynomial, Distance Spectra And Distance Energy Of Some Edge Deleted Graphs" International Journal of Mathematics Trends and Technology 67.7 (2021):94-103.

**APA Style: **B. S. Durgi, Umesh Poojari, D.S.Revankar, P. R. Hampiholi(2021). Distance Polynomial, Distance Spectra And Distance Energy Of Some Edge Deleted Graphs International Journal of Mathematics Trends and Technology, 94-103.

**Abstract**

The distance polynomial of G is defined as the determinant \I-D\, where I is the unit matrix of the order same as that of D. The distance spectra of a connected graph G is the collection of distance eigenvalues of G and the distance energy of G is the absolute sum of the distance eigenvalues of G. In this paper, the distance spectra and the distance energy of the graph obtained by deleting the edges of complete subgraph K_{r} from the complete graph K_{p} are obtained.

**Reference**

[1] D. M. Cvetkovi´c, M. Doob and H. Sachs, Spectra of Graphs.Theory and Applications, Academic Press, New York – London, (1980).

[2] K. Balasubramanian, Computer Generation of Distance Polynomials of Graphs, Journal of Computational Chemistry , 11 (1990) 829–836.

[3] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann(Eds.), Algebraic Combinatorics and Applications, Springer–Verlag, Berlin, 001(196–211).

[4] P. W. Fowler, G. Caporossi and P. Hansen, Distance matrices, Wiener indices, andrelated invariants of fullerenes, J. Phys. Chem. A. 105 (2001) 6232–6242.

[5] F. Buckley and F. Harary, Distance in Graphs, Addison Wesley, (1990).

[6] G. Indulal, I. Gutman and A. Vijayakumar, On distance energy of graphs, MATCHCommun. Math. Comput. Chem. 60 (2008) 461–472.

[7] G. Indulal and I. Gutman, On the distance spectra of some graphs, Math. Commun. 13 (2008) 123–131.

[8] R. Laskar, Eigenvalues of the adjacency matrix of cubic lattice graphs, Pacific J. Math. 29(1969) 623–629.

[9] M. Marcus and H. Mine, A survey of Matrix theory and Matrix inequalities, Allynand Bacon, Inc., Boston, Mass., 1964.

[10] B. D. McKay, On the spectral characterization of trees, Ars Combin. 3 (1977) 219–232.

[11] H. S. Ramane, I. Gutman, D. S. Revankar, Distance Equienergetic graphs, MATCH Commun. Math. Comput. Chem 60, (2008) 473-484

[12] D. Stevanovi´c and G. Indulal, The distance spectrum and energy of the compositions of regular graphs, Appl. Math. Lett. 22 (2009) 1136–1140.

[13] P. R. Hampiholi and B. S. Durgi, Characteristic polynomial of some cluster graphs, Kragujevac Journal of Mathematics, 37(2) (2013) 369 - 373.

[14] P. R. Hampiholi, H. B. Walikar and B. S. Durgi, Energy of complement of stars, J. Indones Math. Soc., Vol 19, No. 1 (2013) 15-21.

[15] P. R. Hampiholi and B. S. Durgi, On the Spectra and Energy of some cluster graphs, Int. J. Math. Sci. &Engg.Appls. (IJMSEA) ISSN 0973-9424, 7(2) (2013) 219-228

[16] B. S. Durgi, P. R. Hampiholi and S. M. Mekkalike, Distance spectra and Distance energy of some cluster graphs, Mathematica Aeterna4(8) (2014) 817 – 825

[17] H. S. Ramane, D. S. Revankar, I. Gutman, S. B. Rao, B. D. Acharya, H. B. walikar, Bounds for Distance energy of a graph, Kragujevac Journal of Mathematics, (31)(2008) 59-68.

[18] Sudhir R. Jog, Prabhakar R. Hampiholi, Anjana S. Joshi, On the energy of some graphs, Annals of Pure and Applied Mathematics, 17(1) (2018) 15 – 21.

**Keywords : **Complete graph, Distance eigenvalue of a graph, Distance spectrumof a graph, Distance energy of a graph.