Volume 67 | Issue 7 | Year 2021 | Article Id. IJMTT-V67I7P519 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I7P519
S. C. Shiralashetti,B. S. Hoogar, "Solving Fractional Delay Integro-Differential Equations by Chebyshev Wavelets," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 7, pp. 158-168, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I7P519
[1] Igor Podlubny, Fractional differential equations, Academic press, San Diego. (1999).
[2] W.H. Deng, C.P. Li, Chaos Synchronization of the fractional Lii System, Physica A. 39(2) (2005) 61-72.
[3] E.Baskin, A.Iomin, Electro Chemical manifestation of nanoplasmonics in fractal media,Open phys. 11(6) (2013) 676-684 .
[4] T.T. Hartley, C.F.Lorenzo, H.K., Qammer, Chaos in a fractional order Chua’s system, IEEE Trans. Circuits Syst. I Fundam. Theory Appl, 42(8) (1995) 485-490.
[5] A.A.Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier science. 204 (2006) 540-565.
[6] M. Ghasemi, M. Fardi, R.K. Ghaziani, Numerical solution of nonlinear delay differential equations of fractional order in reproducing Kernel Hilbert Space,Appl.Math.comput. 268 (2015) 815-831.
[7] H. Saeedi, M.M. Mohseni, N. Mollahasani, G.N. Chuev, A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order, Commun. Nonlinear Sci. Numer Simulat. 16(3) (2011) 1154-1163.
[8] K. Maleknejad, S. Sohrabi, Numerical solution of Fredholm integral equations of the first kind by using Legendre wavelets, Appl. Math. Comput. 186(1) (2007) 836-843.
[9] Y. Naunz, Variational iteration method and Homotopy perturbation method for fourth-order fractional integro-differential equations, Comput. Math. Appl., 61 (2011) 2230-2241.
[10] S.S. Ray, Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method, Commun. Nonlinear Sci. Numer. Simulate. 14 (2009) 129-306.
[11] L. Huang, X.F. Li, Y.L. Zhao, X.Y. Duan, Approximate solution of fractional integro-differential equations by Taylor expansion method, Comput. Math. Appl. 62(3) (2011) 1127-1134.
[12] S. Shahmorad, M.H. Ostadzad, D.Baleanu, A Tau-like numerical method for solving delay integro-differential equations, Applied numerical mathematics, 151 (2020) 322-336.
[13] Emad M. H. Mohamed, K.R. Raslan, K.A. Khalid, M.A. Abd El Salam, On general form of fractional delay integro-differential equations, Arab journal of basic and applied sciences,27(1) (2020) 313-323.
[14] Khadijo Rashid Adem and Chaudry Masood Khalique, On the exact explicit solutions of a generalized (2+1)dimensional Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation,Proceedings of the International Conference on Scientific Computing (CSC), 32 (2013).
[15] Biswajit Das and Dhritikesh Chakrabarty,Inversion of Matrix by Elementary Column Transformation: Representation of Numerical Data by a Polynomial Curve,International Journal of Mathematics Trends and Technology (IJMTT),42(1) (2017) 45-49.
[16] S. Sekar and K. Prabhavathi, Numerical treatment for the Nonlinear Fuzzy Differential Equations using Leapfrog Method, International Journal of Mathematics Trends and Technology (IJMTT), 26(1) (2015) 35-39.