Volume 67 | Issue 8 | Year 2021 | Article Id. IJMTT-V67I8P522 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I8P522
Yüksel Soykan, "A Study On the Recurrence Properties of Generalized Tetranacci Sequence," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 8, pp. 185-192, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I8P522
[1] G. S. Hathiwala, D. V. Shah, Binet.Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods, Mathematical Journal of Interdisciplinary Sciences, 6(1) (2017) 37-48.
[2] R. S. Melham, Some Analogs of the Identity F2n+F2n+1=F2 2n+1, Fibonacci Quarterly, (1999) 305-311.
[3] L. R. Natividad, On Solving Fibonacci-Like Sequences of Fourth, Fifth and Sixth Order, International Journal of Mathematics and Computing, 3(2) (2013) 38-40.
[4] Polatlı, E.E., Soykan, Y., A Study on Generalized Fourth-Order Jacobsthal Sequences, Submitted.
[5] B. Singh, P. Bhadouria, O. Sikhwal, K. Sisodiya, A Formula for Tetranacci-Like Sequence, Gen. Math. Notes, 20(2) (2014) 136-141.
[6] N.J.A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org/
[7] Soykan, Y., Gaussian Generalized Tetranacci Numbers, Journal of Advances in Mathematics and Computer Science, 31(3) (2019) 1-21, Article no.JAMCS.48063.
[8] Soykan, Y., A Study of Generalized Fourth-Order Pell Sequences, Journal of Scienti.c Research and Reports, 25(1-2) (2019) 1-18.
[9] Soykan, Y., On Generalized 4-primes Numbers, Int. J. Adv. Appl. Math. and Mech. 7(4) (2020) 20-33.
[10] Soykan, Y., Properties of Generalized (r,s,t,u)-Numbers, Earthline Journal of Mathematical Sciences, 5(2) (2021) 297-327. https://doi.org/10.34198/ejms.5221.297327
[11] M. E. Waddill, Another Generalized Fibonacci Sequence, M. E., Fibonacci Quarterly, 5(3) (1967) 209-227.
[12] M. E. Waddill, The Tetranacci Sequence and Generalizations, Fibonacci Quarterly, (1992) 9-20.