Volume 67 | Issue 9 | Year 2021 | Article Id. IJMTT-V67I9P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I9P507
In this paper, we apply the Adomian decomposition method (ADM) for solving nonlinear system of fractional differential equations (FDEs) of sequential Riemann-Liouville sense. The existence and uniqueness of the solution are proved. The convergence of the series solution and the error analysis are discussed.
[1] K. S. Miller, and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience, New York (1993).
[2] I. Podlubny, Fractional Differential Equations, Academic Press, New York (1999).
[3] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional differential equations, Elsevier, New York (2006).
[4] Sh. A. Abd El-Salam, and A. M. A. El-Sayed, On the stability of some fractional-order non-autonomous systems, Electronic Journal of Qualitative Theory of Differential Equations, 6 (2007) 1-14.
[5] A. M. A. El-Sayed, and Sh.A. Abd El-Salam, On the stability of a fractional-order differential equation with nonlocal initial condition, Electronic Journal of Qualitative Theory of Differential Equations, 29 (2008) 1-8.
[6] D. J. Evans, and K. R. Raslan, The Adomian decomposition method for solving delay differential equation, International Journal of Computer Mathematics, (UK), 82 (2005) 49-54.
[7] D. Zwillinger, Handbook of Differential Equations, Academic Press (1997).
[8] B. Mensour, and A. Longtin, Chaos control in multistable delay-differential equations and their singular limit maps, Physical Review E, 58 (1998) 410-422.
[9] J. M. Hefferan, and R. M. Corless, Solving some delay differential equations with computer algebra, Applied Probability Trust, (2005) 1-22.
[10] A. M. A. El-Sayed, E. M. El-Mesiry and H. A. A. El-Saka, Numerical solution for multi-term fractional (arbitrary) orders differential equations, Comput. and Appl. Math., 23(1) (2004) 33-54.
[11] E. M. El-Mesiry, A. M. A. El-Sayed and H. A. A. El-Saka, Numerical methods for multi-term fractional (arbitrary) orders differential equations, Appl. Math. and Comput., 160(3) (2005) 683-699.
[12] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer (1995).
[13] G. Adomian, Stochastic System, Academic press (1983).
[14] G. Adomian, Nonlinear Stochastic Operator Equations, Academic press, San Diego (1986).
[15] G. Adomian, Nonlinear Stochastic Systems: Theory and Applications to Physics, Kluwer (1989).
[16] K. Abbaoui, and Y. Cherruault, Convergence of Adomian’s method applied to differential equations, Computers Math. Applic., 28 (1994) 103-109.
[17] Y. Cherruault, G. Adomian, K. Abbaoui, and R. Rach, Further remarks on convergence of decomposition method, International J. of Bio-Medical Computing., 38 (1995) 89-93.
[18] N. T. Shawaghfeh, Analytical approximate solution for nonlinear fractional differential equations, J. Appl. Math. Comput., 131 (2002) 517-529.
[19] I. L. El-kalla, Convergence of the Adomian method applied to a class of nonlinear integral equations, Applied Mathematics Letters, 21 (2008) 372-376.
[20] S. Momani, and K. Al-Khaled, Numerical solutions for systems of fractional differential equations by the decomposition method, J. Appl. Math. Comput. 162 (2005) 1351-1365.
[21] H. Jafari, and V. Daftardar-Gejji, Solving a system of nonlinear fractional differential equations using Adomian decomposition method, J. Appl. Math. Comput., 196 (2) (2006) 644–651.
[22] E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J. Math. Anal. Appl., (2007) 542–553.
E. A. A. Ziada, "Solution of Nonlinear System of Fractional Differential Equations," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 9, pp. 65-71, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I9P507