ON WEAK COMPACTNESS IN LΦ(μ, X)

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2021 by IJMTT Journal
Volume-67 Issue-9
Year of Publication : 2021
Authors : Tanusree Choudhury
  10.14445/22315373/IJMTT-V67I9P519

MLA

MLA Style: Tanusree Choudhury. "ON WEAK COMPACTNESS IN LΦ(μ, X)" International Journal of Mathematics Trends and Technology 67.9 (2021):161-170. 

APA Style: Tanusree Choudhury(2021). ON WEAK COMPACTNESS IN LΦ(μ, X)  International Journal of Mathematics Trends and Technology, 67(9), 161-170.

Abstract
Here we characterize relative weak compact subset of Orlicz- Bochner space LΦ(μ, X), where X is a re exive Banach space and Φ is a Young function, first using "convex compactness criterion" and then using regular method of summability. We also prove a convergence theorem in LΦ(μ, X) which generalization of similar result in L1(μ, X) and Lp(μ, X) of A. Ulger[19] and S. Diaz [4].

Reference

[1] F.G.Bombal, Sobre los espacios de Orlicz de functioes vectoriales, Collect. Math., 32(1981),1- 42.
[2] N.D. Chakraborty, T.Choudhury, Convergence Theorems for Pettis Integrable Functions and Regular Methods of Summability. J. Math. Anal. Appl., 359 (2009), 95-105.
[3] N.D. Chakraborty, T.Choudhury, On Some Properties of Pettis Integrable Multifunction,J. of Convex Analysis, 19(2012),No.3, 671-683.
[4] S.Diaz, Weak compactness in L1(μ, X), Proc. Amer. Math. Soc. 124(9)(1996), 2685-2693.
[5] J.Diestel, J.J.Uhl Jr., Vector Measures, Math. Surveys Monogr. vol. 15, Amer. Math. Soc. Providence, RI, 1977 -116.
[6] L.V. Kantorovich, G.P.Akilov, Functional Analysis, Nauka, Moscow(3rd ed. in Russian)( 1984).
[7] M.A. Krasnoselskii, Ya. Ruteckii, Convex functions and orlicz spaces, Noordhoff, Groningen( 1961).
[8] J.Diestel, W. M. Ruess, W. Schachermayer, Weak compactness in L1(μ, X), Proc. Amer. Math. Soc.118(2)(1993), 447-453.
[9] W.A.Luxemberg, Function spaces, Delft(1955)
[10] W.A.Luxemberg, A.C.Zaanen, Compactness of integral operators in Banach function spaces, Math. Annalen, 149(1963),150-180.
[11] M.Nowak, Mixed topology on normed function spaces I, Bull. Pol. Acad. Sci. 36(5-6)(1988), 251-262.
[12] M.Nowak, Order continuous seminorms and weak compactness in Orliczs spaces, Collect. Math., 44(1993), 217-236.
[13] M.Nowak, Duality theory of vector-valued function spaces I, Bull. Pol. Acad. Sci. 37(1997), 195-215.
[14] M.Nowak, Weak compactness in Kothe-Bochner spaces and regular mettods of summability, Bull. Pol. Acad. Sci. 50(4)(2002), 417-425.
[15] M.Nowak, Weak compactness in Kothe-Bochner spaces and Orlicz-Bochner spaces. Indag. Mathem., N.S., 10(1), 73-76.
[16] M.Nowak, Integration in Orlicz-Bochner Spaces, J.Function spaces, Volume 2018, Article ID 9380350
[17] M.Nowak, Continuous linear operators on Orlicz-Bochner spaces, Open Mathematics, 2019; 17: 1147-1155
[18] M.M.Rao, Z.D.Ren, Theory of Orlicz spaces, Marcel Dekker, New York, Basel, Hong Kong(1991).
[19] A. Ulger, Weak Compactness in L1(μ, X), Proc. Amer. Math. Soc. ,113 (1991), 143-149.
[20] H.W.Young, On classes of summable functions and their Fourier series, Procceedings of the Royal Society of London, 87(1912), 225-229.

Keywords : convex compactness