...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 67 | Issue 9 | Year 2021 | Article Id. IJMTT-V67I9P521 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I9P521

GENERALIZED HYERS-ULAM-RASSIAS TYPE STABILITY OF THE 2k-VARIABLE ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN BANACH SPACES AND BANACH SPACES


LY VAN AN
Abstract

In this paper we use the direct method to proved two the generalized additive functional inequalities with 2k-variables and their Hyers-Ulam-Rassias stability. First are investigated in Banach spaces and the last are investigated in non-Archimedean Banach spaces. We will show that the solutions of the inequalities are additive mappings. These are the main results of this paper.

Keywords
Cauchy functional equation, additive functional inequality, additive β - functional inequalities, Banach space, non-Archimedian Banach space, Hyers-Ulam-Rassias stability.
References

[1] Tosio Aoki. On the stability of the linear transformation in banach spaces. Journal of the Mathe- matical Society of Japan, 2(1-2):64{66, 1950.
[2] Ly V an An. Hyers-Ulam stability of functional inequalities with three variable in Banach spaces and Non-Archemdean Banach spaces International Journal of Mathematical Analysis Vol.13, 2019, no. 11. 519-53014, 296-310. .
[3] A.Bahyrycz, M. Piszczek, Hyers stability of the Jensen function equation, Acta Math. Hungar.,142 (2014),353-365. .
[4] M.Balcerowski, On the functional equations related to a problem of z Boros and Z. Droczy, Acta Math. Hungar.,138 (2013), 329-340.
[5] H:Dimou1; Y:ribou2; S:Kabbaj3. Generalzed functional inequalities in Banach space,Volume 7(2), 202, Pages 337-349.. .ISSN:Online 2351-8227-Print 2605-6364.DOI:10.2478/mjpaa-2021-0022.
[6] W lodzimierz Fechner. Stability of a functional inequality associated with the jordan{von neumann functional equation. Aequationes Mathematicae, 71(1):149{161, 2006.
[7] Pascu Gavruta A generalization of the hyers-ulam-rassias stability of approximately additive mappings. Journal of Mathematical Analysis and Applications, 184(3):431{436, 1994.
[8] Attila Gilanyi. Eine zur parallelogrammgleichung aquivalente ungleichung. Aequationes Mathemati- cae, 62(3):303{309, 2001. GENERALIZED HYERS-ULAM-RASSIAS TYPE STABILITY OF THE 2k-VARIABLE ADDITIVE FUNCTIONAL INEQUALITIES [9] Attila Gilanyi. On a problem by k. nikodem. Mathematical Inequalities and Applications, 5:707{710, 2002.
[10] Donald H Hyers. On the stability of the linear functional equation. Proceedings of the National Academy of Sciences of the United States of America, 27(4):222, 1941.
[11] . K. Hensel, Uber eine neue Begrundung der Theorie der algebraischen Zahlen, Jahres-ber Deutsch. Math. Verein, 6(1897), 8388 .
[12] Jung Rye Lee, Choonkil Park, and Dong Yun Shin. Additive and quadratic functional in equalities in non-archimedean normed spaces. 2014.
[13] M.S. Moslehian and M.Th. Rassias, Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discrete Math, 1 (2007), 325334. .
[14] W. P and J. Schwaiger, A system of two inhomogeneous linear functional equations, Acta Math. Hungar 140 (2013), 377-406 .
[15] Choonkil Park. Functional inequalities in non-archimedean normed spaces. Acta Mathematica Sinica, English Series, 31(3):353{366, 2015.
[16] Choonkil Park, Young Sun Cho, and Mi-Hyen Han. Functional inequalities associated with jordan-von neumann-type additive functional equations. Journal of Inequalities and Applications, 2007(1):041820, 2006.
[17] Choonkil: Park. Additive β-functional inequalities, Journal of Nonlinear Science and Appl. 7(2014), 296-310 .
[18] Choonkil: Park. Additive ρ-functional inequalities and equations, Journal of Mathmatical inequali- ties Volum 9, Number 1 (2015), 17- 26 doi: 10.7153/jmi-09-02. .
[19] Themistocles M Rassias. On the stability of the linear mapping in banach spaces. Proceedings of the American Mathematical Society, 72(2):297{300, 1978.
[20] Jurg Ratz. On inequalities associated with the jordan-von neumann functional equation. Aequationes mathematicae, 66(1):191{200, 2003.
[21] Stanislaw M Ulam. A collection of mathematical problems, volume 8. Interscience Publishers, 1960.

Citation :

LY VAN AN, "GENERALIZED HYERS-ULAM-RASSIAS TYPE STABILITY OF THE 2k-VARIABLE ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN BANACH SPACES AND BANACH SPACES," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 9, pp. 183-197, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I9P521

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved