Volume 68 | Issue 11 | Year 2022 | Article Id. IJMTT-V68I11P503 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I11P503
Received | Revised | Accepted | Published |
---|---|---|---|
01 Oct 2022 | 05 Nov 2022 | 17 Nov 2022 | 30 Nov 2022 |
In this paper, we propose and study a domain decomposition method for a system of coupled equations with a nonlocal term in the stationary case. This algorithm combines an alternating direction scheme and a domain decomposition. The underlying idea is that with a good domain decomposition, we can better describe for each point the interaction neighbourhood. Moreover, the second step of this method is a good preconditioner of the first step. Indeed, the matrices of the first step are poorly dimensioned because of the nonlocal term. Finally, although combining the alternating direction scheme and the domain decomposition, our algorithm has a good degree of parallelism.
[1] Agoshkov, V. I. Poincar´e-Steklov’s operators and domain decomposition methods in finite-dimensional spaces. First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987), 73–112, SIAM, Philadelphia, PA, 1988.
[2] Andami Ovono, A.From local to nonlocal in a diffusion model. Discrete. Conti. Dyn. Syst. Ser. S,(2011), 54–60.
[3] Andami Ovono, A.Asymptotic behaviour for a diffusion equation gouverned by nonlocal interactions. Electron. J. Differential Equations. 134(2010), 1–16.
[4] Andami Ovono, A.; Rougirel, A. Elliptic equation with diffusion parameterized by the range of nonlocal interactions. Annali di Matematica, (2010) 189, 163-185.
[5] Andami Ovono, A.; Ipopa, M. A. On the nonlocal diffusion equation with competition between a nonlocal source and damping terms. J. Math. Anal. 6(2015), no. 2, 1–12 ; MR3367007.
[6] Bayada, G.; Sabil, J.; Sassi, T. Algorithme de Neumann-Dirichlet pour des probl`emes de contact unilat´eral: r´esultat de convergence. (French) [Neumann-Dirichlet algorithm for unilateral contact problems: convergence results] C. R. Math. Acad. Sci. Paris 335 (2002), no. 4, 381–386.
[7] Bendahmane, M.; Sepulveda, M. A. Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete. Conti. Dyn. Syst. Ser. B,11 (2009), 823–853.
[8] Bramble, J., Pasciak, J., Schatz, A. The construction of preconditionners for elliptic problems by substructuring I. Math. Comp., 47 (1986), pp 103–134.
[9] Bramble, J., Pasciak, J., Schatz, A. The construction of preconditionners for elliptic problems by substructuring II. Math. Comp., 49 (1987), pp 1–16.
[10] Bramble, J., Pasciak, J., Schatz, A. The construction of preconditionners for elliptic problems by substructuring III. Math. Comp., 51 (1988), pp 415–430.
[11] Bramble, J., Pasciak, J., Schatz, A. The construction of preconditionners for elliptic problems by substructuring IV. Math. Comp., 53 (1989), pp 1–24.
[12] Bjorstad, P., Widlund, O. B. Solving elliptic problems on regions partitioned into substructures. in Elliptic Problem Solvers II, Birkhoff, G., Schoenstadt, eds., Academic Press, New York, 1984, pp 245–255.
[13] Bjorstad, P., Widlund, O. B. Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal., 23 (1986), pp 1097–1120.
[14] Chan, T., Glowinski, R., P´eriaux, J., Widlund, O. B. Domain decomposition methods. SIAM, Philadephia, PA, 1989.
[15] Chan, T., Glowinski, R., P´eriaux, J., Widlund, O. B. Proceedings of the Third International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadephia, PA, 1990.
[16] Chan, T., Keyes, D., Meurant, G., Scroggs, J., Voigt, R. Proceedings of the Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadephia, PA, 1992.
[17] Chan, T., Mathew, T. Domain decomposition algorithms. Acta Numerica 1994, Acta Numer., Cambridge University Press, UK, 1994, 61–143.
[18] Chan, T., Resasco, D. C., A survey of preconditioners for Domain Decomposition. Technical Report, /DCS/RR- 414, Yale University, New Haven, CT, 1985.
[19] Chipot,M. Lovat, B.Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal. Theory Methods Appl. 30 (1993), no. 7, 4619-4627.
[20] Chipot,M. Elements of Nonlinear Analysis. Basel Boston Berlin: Birkh¨auser, 2000. Print.
[21] Chipot,M.; Lovat, B.Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 8 (2001), 35–51.
[22] Chipot,M.; , Rodrigues, J.-F. On a class of nonlocal nonlinear elliptic problems. RAIRO Model. Math. Anal. Num. 26 (1992), 447–467.
[23] Dinh, Q., Glowinski, R., P´eriaux, J.Solving elliptic problems by domain decomposition methods with application. in Elliptic Problem Solvers II, Birkhoff, G., Schoenstadt, eds., Academic Press, New York, 1984, pp 395–426.
[24] Glowinski R., Golub, G., Meurant, G., P´eriaux, J. Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadephia, PA, 1988.
[25] Glowinski R., Kuznetsov, Y., Meurant, G., P´eriaux, J., Widlund, O. B. Proceedings of the Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadephia, PA, 1991.
[26] Glowinski R., Le Tallec, P. Augmented lagrangian interpretation of the nonoverlaping Schwarz alternating method in the Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadephia, PA, 1990, pp 224-231.
[27] Guo,W.; Hou, L. S., Generalizations and accelerations of Lions’ nonoverlapping domain decomposition method for linear elliptic PDE. SIAM J. Numer. Anal. 41 (2003), no. 6, 2056–2080
[28] Ipopa M.A., Sassi T., Un algorithme de type Robin pour les probl`emes de contact unilat´eral. C.R.Acad. Sci. Paris, Ser. I, 346 (2008).
[29] Ipopa M.A., Roux F.-X., Sassi T., Generalization of Lion’s nonoverlapping domain decomposition method for contact problems. Lecture Notes in Computational Science and Engineering, Vol 60, pp 623-630, 2008.
[30] Krause, R. H.;Wohlmuth, B. I. Nonconforming domain decomposition techniques for linear elasticity. East-West J. Numer. Math. 8 (2000), no. 3, 177–206.
[31] Le Tallec, P. Domain decomposition methods in computational mechanics. Comput. Mech. Adv., 1(2):121-220, 1994.
[32] Le Tallec, P.; Sassi, T. Domain decomposition with nonmatching grids: augmented Lagrangian approach. Math. Comp. 64 (1995), no. 212, 1367–1396.
[33] Le Tallec, P.; Vidrascu M. M´ethode de D´ecomposition de Domaines en Calcul de Structure. Premier Colloque National en Calcul de Structures. Giens, 1993.
[34] Lions, P.-L. On the Schwarz alternating method I. A variant for nonoverlapping subdomains. In Glowinski R., Golub B. H., Meurant G. B., P´erieux J.,Widlund O. B., editors, Proc. 1rst Conference on Domain Decomposition Methods, 1–42, SIAM, Philadelphia, 1988.
[35] Lions, P.-L. On the Schwarz alternating method III. A variant for nonoverlapping subdomains. Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), 202–223, SIAM, Philadelphia, PA, 1990.
[36] Oliveira, L. A. F. On reaction-diffusion system. Electron. J. Equ. (1998), no. 24, 1–10.
[37] Raposo, C. A.; Sepulveda, M.; Villagran, O. V.; Pereira, D. C.; Santos, M. L. Solution and Asymptotic Behaviour for a Nonlocal Coupled System of Reaction-Diffusion . Acta. Appl. Math. (2008), no. 102, 37–56.
[38] Roux, F.-X.; Magoul`es, F.; Series, L.; Boubendir, Y. Approximation of optimal interface boundary conditions for two-Lagrange multiplier FETI method. Domain decomposition methods in science and engineering, 283–290, Lect. Notes Comput. Sci. Eng., 40, Springer, Berlin, 2005.
[39] Schwarz, H. A. Gasamelete Mathematische Abhanlugen . Springer, Berlin. (1890), Volume 2, 133–143. First published in Vierteljahrsschrift der Naturorschenden Gesellschaft in Zurich. (1870), volume 15, 272-286.
Mohamed Ali Ipopa, Brice Landry Doumbe Bangola, Armel Andami Ovono, "Domain Decomposition Method for a Nonlocal Coupled System in the Stationary Case," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 11, pp. 16-31, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I11P503