Volume 68 | Issue 11 | Year 2022 | Article Id. IJMTT-V68I11P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I11P505
Aboubacar Sidiki Cisse, Roy Kiogora, Kennedy Awuor, "Modeling and Numerical Simulation of Incompressible Flows using a Pollutant Dispersion Approach," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 11, pp. 46-62, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I11P505
[1] Aghili, A. (2021). Complete solution for the time fractional diffusion problem with mixed boundary conditions by operational method. Applied Mathematics and Nonlinear Sciences, 6(1), 9–20.
[2] Aljohani, N. S., Kavil, Y. N., Shanas, P. R., Al-Farawati, R. K., Shabbaj, I. I., Aljohani, N. H., Abdel Salam, M. (2022). Environmental Impacts of Thermal and Brine Dispersion Using Hydrodynamic Modelling for Yanbu Desalination Plant, on the Eastern Coast of the Red Sea. Sustainability, 14(8), 4389.
[3] Bath, P. E., Gaitonde, A., & Jones, D. (2022). Reduced Order Aerodynamics and Flight Mechanics Coupling For Tiltrotor Aircraft Stability Analysis. In Aiaa scitech 2022 forum (p. 0284).
[4] Campbell, A., & Glass, K. C. (2000). The legal status of clinical and ethics policies, codes, and guidelines in medical practice and research. McGill LJ, 46, 473.
[5] Chen, D., Liu, X., He, W., Xia, C., Gong, F., Li, X., & Cao, X. (2022). Effect of attenuation on amplitude distribution and b value in rock acoustic emission tests. Geophysical Journal International, 229(2), 933–947.
[6] CHERCHEURS, N. J., & DU TALENT, O. (n.d.). Recherche hepl. Draxler, R. R., & Taylor, A. D. (1982). Horizontal dispersion parameters for long-range transport modeling. Journal of Applied Meteorology and Climatology, 21(3), 367–372.
[7] Fa´undez-Zanuy, M. (2022). Speaker recognition by means of a combination of linear and nonlinear predictive models. arXiv preprint arXiv:2203.03190.
[8] Feng, P., Kong, Y., Liu, M., Peng, S., & Shuai, C. (2021). Dispersion strategies for low-dimensional nanomaterials and their application in biopolymer implants. Materials Today Nano, 15, 100127.
[9] Kopyev, A. V., Kiselev, A. M., Il’yn, A. S., Sirota, V. A., & Zybin, K. P. (2022). Non-Gaussian Generalization of the Kazantsev–Kraichnan Model for a Turbulent Dynamo. The Astrophysical Journal, 927(2), 172.
[10] Kubota, L., & Piccinini, R. (2022). Eigenmode Decomposition of the Diffusion Equation: Applications to Pressure-Rate Deconvolution and Reservoir Pore Volume Estimation. SPE Journal, 1–19.
[11] Liang, X., Peng, J., Zhang, X., Guo, J., & Zhang, Y. (2022). Analysis of the rcf crack detection phenomenon based on induction thermography. Applied Optics, 61(16), 4809–4816.
[12] Ling, Y., Li, Q., Zheng, H., Omran, M., Gao, L., Chen, J., & Chen, G. (2021). Optimisation on the stability of CaO-doped partially stabilised zirconia by microwave heating. Ceramics International, 47(6), 8067–8074.
[13] Milliez, M., & Carissimo, B. (2007). Numerical simulations of pollutant dispersion in an idealized urban area, for different meteorological conditions. Boundary-Layer Meteorology, 122(2), 321–342.
[14] Ngondiep, E. (2022). Unconditional stability over long time intervals of a two-level coupled MacCormack/Crank–Nicolson method for evolutionary mixed Stokes-Darcy model. Journal of Computational and Applied Mathematics, 409, 114148.
[15] Nurwidiyanto, N., & Ghani, M. (2022). Numerical results and stability of adi method to twodimensional advection-diffusion equations with half step of time. In Prisma, prosiding seminar nasional matematika (Vol. 5, pp. 773–780).
[16] Ou, C., Cen, D., Vong, S., & Wang, Z. (2022). Mathematical analysis and numerical methods for Caputo-Hadamard fractional diffusion-wave equations. Applied Numerical Mathematics, 177, 34–57.
[17] Rinaldi, E., Han, X., Hassan, M., Feng, Y., Nori, F., McGuigan, M., & Hanada, M. (2022). Matrixmodel simulations using quantum computing, deep learning, and lattice monte carlo. PRX Quantum, 3(1), 010324.
[18] Shamshuddin, M. D., Mabood, F., Khan, W. A., & Rajput, G. R. (2022). Exploration of thermal P´eclet number, vortex viscosity, and Reynolds number on two-dimensional flow of micropolar fluid through a channel due to mixed convection. Heat Transfer.
[19] Solders, S. K., Galinsky, V. L., Clark, A. L., Sorg, S. F.,Weigand, A. J., Bondi, M.W., & Frank, L. R.(2022). Diffusion mri tractography of the locus coeruleus-transentorhinal cortex connections using go-esp. Magnetic Resonance in Medicine, 87(4), 1816–1831.
[20] Szarek, D., Maraj-Zygmat, K., Sikora, G., Krapf, D., & Wyłoma´nska, A. (2022). Statistical test for anomalous diffusion based on empirical anomaly measure for gaussian processes. Computational Statistics & Data Analysis, 168, 107401.
[21] Wang, F., Khan, M. N., Ahmad, I., Ahmad, H., Abu-Zinadah, H., & Chu, Y.-M. (2022). Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. Fractals, 30(02), 2240051.
[22] Wang, W., Cherstvy, A. G., Metzler, R., & Sokolov, I. M. (2022). Restoring ergodicity of stochastically reset anomalous-diffusion processes. Physical Review Research, 4(1), 013161.
[23] Weerasekera, N., Cao, S., & Shingdon, D. R. (2022). Phase Field Modeling of Ghost Diffusion in Sn-Ag-Cu Solder Joints. European Journal of Applied Physics, 4(2), 28–34.
[24] Zhan, H., Dong, W., Chen, S., Hu, D., Zhou, H., & Luo, J. (2021). Improved test method for convection heat transfer characteristics of carbonate fractures after acidizing etching. Advances in Geo-Energy Research, 5(4), 376.