Volume 68 | Issue 11 | Year 2022 | Article Id. IJMTT-V68I11P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I11P505
Pollution dispersion in water is of tremendous importance since it has a direct impact on water quality, particularly in the open ocean. Using experimental and computer tools, the behavior of contaminants spread in water has been anticipated. A mathematical model has been developed based on incompressible flow using a pollutants dispersion approach. These flows make up a substantial part of fluid mechanics and have applications in a variety of sectors, including aeronautics, machine propulsion, free flow hydraulics, and so on. We first established the general convection equation that control the flow of this type fluid, and then we performed several simulations of basic compressible flows of fluid mechanics, such as pollutant dispersion on the surface of a moving liquid. For the discretization of the terms occurring in the different equations of this model, the numerical resolution is based on the method of finite differences utilizing the Cranck Nicholson diagram and the analysis of the diffusion of pollutants, changeable position of the polluting source. We were able to establish data from the literature using the numerical method used in this investigation, displaying acceptable conformity.
[1] Aghili, A. (2021). Complete solution for the time fractional diffusion problem with mixed boundary conditions by operational method. Applied Mathematics and Nonlinear Sciences, 6(1), 9–20.
[2] Aljohani, N. S., Kavil, Y. N., Shanas, P. R., Al-Farawati, R. K., Shabbaj, I. I., Aljohani, N. H., Abdel Salam, M. (2022). Environmental Impacts of Thermal and Brine Dispersion Using Hydrodynamic Modelling for Yanbu Desalination Plant, on the Eastern Coast of the Red Sea. Sustainability, 14(8), 4389.
[3] Bath, P. E., Gaitonde, A., & Jones, D. (2022). Reduced Order Aerodynamics and Flight Mechanics Coupling For Tiltrotor Aircraft Stability Analysis. In Aiaa scitech 2022 forum (p. 0284).
[4] Campbell, A., & Glass, K. C. (2000). The legal status of clinical and ethics policies, codes, and guidelines in medical practice and research. McGill LJ, 46, 473.
[5] Chen, D., Liu, X., He, W., Xia, C., Gong, F., Li, X., & Cao, X. (2022). Effect of attenuation on amplitude distribution and b value in rock acoustic emission tests. Geophysical Journal International, 229(2), 933–947.
[6] CHERCHEURS, N. J., & DU TALENT, O. (n.d.). Recherche hepl. Draxler, R. R., & Taylor, A. D. (1982). Horizontal dispersion parameters for long-range transport modeling. Journal of Applied Meteorology and Climatology, 21(3), 367–372.
[7] Fa´undez-Zanuy, M. (2022). Speaker recognition by means of a combination of linear and nonlinear predictive models. arXiv preprint arXiv:2203.03190.
[8] Feng, P., Kong, Y., Liu, M., Peng, S., & Shuai, C. (2021). Dispersion strategies for low-dimensional nanomaterials and their application in biopolymer implants. Materials Today Nano, 15, 100127.
[9] Kopyev, A. V., Kiselev, A. M., Il’yn, A. S., Sirota, V. A., & Zybin, K. P. (2022). Non-Gaussian Generalization of the Kazantsev–Kraichnan Model for a Turbulent Dynamo. The Astrophysical Journal, 927(2), 172.
[10] Kubota, L., & Piccinini, R. (2022). Eigenmode Decomposition of the Diffusion Equation: Applications to Pressure-Rate Deconvolution and Reservoir Pore Volume Estimation. SPE Journal, 1–19.
[11] Liang, X., Peng, J., Zhang, X., Guo, J., & Zhang, Y. (2022). Analysis of the rcf crack detection phenomenon based on induction thermography. Applied Optics, 61(16), 4809–4816.
[12] Ling, Y., Li, Q., Zheng, H., Omran, M., Gao, L., Chen, J., & Chen, G. (2021). Optimisation on the stability of CaO-doped partially stabilised zirconia by microwave heating. Ceramics International, 47(6), 8067–8074.
[13] Milliez, M., & Carissimo, B. (2007). Numerical simulations of pollutant dispersion in an idealized urban area, for different meteorological conditions. Boundary-Layer Meteorology, 122(2), 321–342.
[14] Ngondiep, E. (2022). Unconditional stability over long time intervals of a two-level coupled MacCormack/Crank–Nicolson method for evolutionary mixed Stokes-Darcy model. Journal of Computational and Applied Mathematics, 409, 114148.
[15] Nurwidiyanto, N., & Ghani, M. (2022). Numerical results and stability of adi method to twodimensional advection-diffusion equations with half step of time. In Prisma, prosiding seminar nasional matematika (Vol. 5, pp. 773–780).
[16] Ou, C., Cen, D., Vong, S., & Wang, Z. (2022). Mathematical analysis and numerical methods for Caputo-Hadamard fractional diffusion-wave equations. Applied Numerical Mathematics, 177, 34–57.
[17] Rinaldi, E., Han, X., Hassan, M., Feng, Y., Nori, F., McGuigan, M., & Hanada, M. (2022). Matrixmodel simulations using quantum computing, deep learning, and lattice monte carlo. PRX Quantum, 3(1), 010324.
[18] Shamshuddin, M. D., Mabood, F., Khan, W. A., & Rajput, G. R. (2022). Exploration of thermal P´eclet number, vortex viscosity, and Reynolds number on two-dimensional flow of micropolar fluid through a channel due to mixed convection. Heat Transfer.
[19] Solders, S. K., Galinsky, V. L., Clark, A. L., Sorg, S. F.,Weigand, A. J., Bondi, M.W., & Frank, L. R.(2022). Diffusion mri tractography of the locus coeruleus-transentorhinal cortex connections using go-esp. Magnetic Resonance in Medicine, 87(4), 1816–1831.
[20] Szarek, D., Maraj-Zygmat, K., Sikora, G., Krapf, D., & Wyłoma´nska, A. (2022). Statistical test for anomalous diffusion based on empirical anomaly measure for gaussian processes. Computational Statistics & Data Analysis, 168, 107401.
[21] Wang, F., Khan, M. N., Ahmad, I., Ahmad, H., Abu-Zinadah, H., & Chu, Y.-M. (2022). Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. Fractals, 30(02), 2240051.
[22] Wang, W., Cherstvy, A. G., Metzler, R., & Sokolov, I. M. (2022). Restoring ergodicity of stochastically reset anomalous-diffusion processes. Physical Review Research, 4(1), 013161.
[23] Weerasekera, N., Cao, S., & Shingdon, D. R. (2022). Phase Field Modeling of Ghost Diffusion in Sn-Ag-Cu Solder Joints. European Journal of Applied Physics, 4(2), 28–34.
[24] Zhan, H., Dong, W., Chen, S., Hu, D., Zhou, H., & Luo, J. (2021). Improved test method for convection heat transfer characteristics of carbonate fractures after acidizing etching. Advances in Geo-Energy Research, 5(4), 376.
Aboubacar Sidiki Cisse, Roy Kiogora, Kennedy Awuor, "Modeling and Numerical Simulation of Incompressible Flows using a Pollutant Dispersion Approach," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 11, pp. 46-62, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I11P505