Volume 68 | Issue 11 | Year 2022 | Article Id. IJMTT-V68I11P506 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I11P506

Received | Revised | Accepted | Published |
---|---|---|---|

03 Oct 2022 | 05 Nov 2022 | 19 Nov 2022 | 30 Nov 2022 |

In this paper, we investigate the peripheral spectrum of some operators, which is a boundary-type subset of the spectrum of a bounded linear operator in a separable complex Hilbert space. We characterize this set for operators in some equivalence relations and give conditions under which equivalent classes of operators have the same peripheral spectrum.

[1] E. A. Alekhno, “Spectral properties of the band irreducible operators”, Proceedings Positivity IV-Theory and Application, 5-14, 2006.

[2] C. D. Aliprantis and Y.A. Abramovich, “An invitation to operator theory: Graduate studies in Mathematics”, vol. 50, American Mathematical Society, Providence, Rhode Island, 2002.

[3] W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeckl, “Oneparameter semigroups of positive operators: Lecture notes in Mathematics”, vol. 1184, Springer-Verlag, Berlin, MA, 1986.

[4] C. Badea and S. Grivaux, “Size of the peripheral point spectrum under power or resolvent growth conditions”, J. of Functional Analysis, 246, 302-329, 2007.

[5] V. Caselles, “On the peripheral spectrum of positive operators”, Israel J. Math. 58, 144-160,1987.

[6] S. Clary, “Equality of spectra of quasi-similar hyponormal operators”, Proc. Amer. Math. Soc., 53(1), 88-90, 1975

[7] R. Delaubenfels, “Similarity to a contraction for power-bounded operators with finite peripheral spectrum”, Trans Amer. Math. Soc. 350, No. 8, 3169-3191, 1998.

[8] R. G. Douglas, “On the operator equation S*XT = X and related topics”, Acta. Sci. Math. (Szeged) 30(3), 19-32, 1969.

[9] T. Eisner, B. Farkas, M. Haase, and R. Nagel, “Operator theoretic aspects of ergodic theory: Graduate texts in Mathematics”, Springer- Verlag, 2006.

[10] S. P. Eveson and B. S. Kay, “Peripheral spectrum of order-preserving normal operators”, Bull. London Math. Soc. 31, Issue 5, 574- 576, 1999.

[11] K. H. Forster and B. Nagy, “On nonnegative operators and fully cyclic peripheral spectrum”, Electronic J. of Lin. Alg. 3, 13-22, 1998.

[12] J. Gluck, “On the peripheral spectrum of positive operators”, Positivity, 20, 307-336, 2016.

[13] P. R. Halmos, “A Hilbert space problem book”, Springer-Verlag, New York, 1982.

[14] T.B. Hoover, “Quasisimilarity of operators”, Illinois J. of Math. 16, 678-686, 1972.

[15] C. S. Kubrusly, “Spectral theory of operators”, Birkhauser, New York, 2012.

[16] C. S. Kubrusly, “An introduction to models and decompositions in operator theory”, Birkhäuser, Boston, 1997.

[17] C. S. Kubrusly, “Elements of operator theory”, Birkhäuser, Basel, Boston, 2001.

[18] C. S. Kubrusly, “Hilbert space operators: A problem solving approach”, Birkhäuser, Basel, Boston, 2003.

[19] S. Mouton and H. Raubenheimer, “More spectral theorems in ordered Banach algebras”, Positivity 1, No. 4, 305-317, 1997.

[20] V. Muller, “On the topological boundary of the one-sided spectrum”, Czechoslovakia Math. J. 49(124), 561-568, 1999.

[21] B. M. Nzimbi, G. P. Pokhariyal, and S. K. Moindi, “A note on metric equivalence of some operators”, Far East J. of Math. Sci. (FJMS) 75, No.2, 301-318, 2013.

[22] M. Radjabalipour, “On subnormal operators”, Trans. Amer. Math. Soc. 211, 377-389, 1975.

[23] H. M. Rodrigues and J. Sol-Morales, “A note on the relationship between spectral radius and norms of bounded linear operators”, Cardernos de Matematica 9, 61-65, 2008.

[24] H. R. Thieme, “Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity”, Siam J. Appl. Math. 70, No. 1, 188-211, 2009.

[25] A. C. Zaanen,” Introduction to operator theory in Riesz spaces”, Springer Science, 2012.

[26] W. Zhang, J. Hou, and X. F. Qi, “Maps preserving peripheral spectrum of generalized Jordan products of operators”, Acta Mathematica Sinica, English Series 31, No. 6, 953-972, 2015.

Bernard Mutuku Nzimbi, Faith Muthoni Mwangi, Stephen Wanyonyi Luketero, "Remarks on the Peripheral Spectrum of Operators in Hilbert Spaces," *International Journal of Mathematics Trends and Technology (IJMTT)*, vol. 68, no. 11, pp. 63-72, 2022. *Crossref*, https://doi.org/10.14445/22315373/IJMTT-V68I11P506