...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 68 | Issue 11 | Year 2022 | Article Id. IJMTT-V68I11P506 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I11P506

Remarks on the Peripheral Spectrum of Operators in Hilbert Spaces


Bernard Mutuku Nzimbi, Faith Muthoni Mwangi, Stephen Wanyonyi Luketero
Received Revised Accepted Published
03 Oct 2022 05 Nov 2022 19 Nov 2022 30 Nov 2022
Abstract

In this paper, we investigate the peripheral spectrum of some operators, which is a boundary-type subset of the spectrum of a bounded linear operator in a separable complex Hilbert space. We characterize this set for operators in some equivalence relations and give conditions under which equivalent classes of operators have the same peripheral spectrum.

Keywords
Resolvent, Spectrum, Spectral radius, Peripheral spectrum, Peripheral point spectrum.
References

[1] E. A. Alekhno, “Spectral properties of the band irreducible operators”, Proceedings Positivity IV-Theory and Application, 5-14, 2006.
[2] C. D. Aliprantis and Y.A. Abramovich, “An invitation to operator theory: Graduate studies in Mathematics”, vol. 50, American Mathematical Society, Providence, Rhode Island, 2002.
[3] W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeckl, “Oneparameter semigroups of positive operators: Lecture notes in Mathematics”, vol. 1184, Springer-Verlag, Berlin, MA, 1986.
[4] C. Badea and S. Grivaux, “Size of the peripheral point spectrum under power or resolvent growth conditions”, J. of Functional Analysis, 246, 302-329, 2007.
[5] V. Caselles, “On the peripheral spectrum of positive operators”, Israel J. Math. 58, 144-160,1987.
[6] S. Clary, “Equality of spectra of quasi-similar hyponormal operators”, Proc. Amer. Math. Soc., 53(1), 88-90, 1975
[7] R. Delaubenfels, “Similarity to a contraction for power-bounded operators with finite peripheral spectrum”, Trans Amer. Math. Soc. 350, No. 8, 3169-3191, 1998.
[8] R. G. Douglas, “On the operator equation S*XT = X and related topics”, Acta. Sci. Math. (Szeged) 30(3), 19-32, 1969.
[9] T. Eisner, B. Farkas, M. Haase, and R. Nagel, “Operator theoretic aspects of ergodic theory: Graduate texts in Mathematics”, Springer- Verlag, 2006.
[10] S. P. Eveson and B. S. Kay, “Peripheral spectrum of order-preserving normal operators”, Bull. London Math. Soc. 31, Issue 5, 574- 576, 1999.
[11] K. H. Forster and B. Nagy, “On nonnegative operators and fully cyclic peripheral spectrum”, Electronic J. of Lin. Alg. 3, 13-22, 1998.
[12] J. Gluck, “On the peripheral spectrum of positive operators”, Positivity, 20, 307-336, 2016.
[13] P. R. Halmos, “A Hilbert space problem book”, Springer-Verlag, New York, 1982.
[14] T.B. Hoover, “Quasisimilarity of operators”, Illinois J. of Math. 16, 678-686, 1972.
[15] C. S. Kubrusly, “Spectral theory of operators”, Birkhauser, New York, 2012.
[16] C. S. Kubrusly, “An introduction to models and decompositions in operator theory”, Birkhäuser, Boston, 1997.
[17] C. S. Kubrusly, “Elements of operator theory”, Birkhäuser, Basel, Boston, 2001.
[18] C. S. Kubrusly, “Hilbert space operators: A problem solving approach”, Birkhäuser, Basel, Boston, 2003.
[19] S. Mouton and H. Raubenheimer, “More spectral theorems in ordered Banach algebras”, Positivity 1, No. 4, 305-317, 1997.
[20] V. Muller, “On the topological boundary of the one-sided spectrum”, Czechoslovakia Math. J. 49(124), 561-568, 1999.
[21] B. M. Nzimbi, G. P. Pokhariyal, and S. K. Moindi, “A note on metric equivalence of some operators”, Far East J. of Math. Sci. (FJMS) 75, No.2, 301-318, 2013.
[22] M. Radjabalipour, “On subnormal operators”, Trans. Amer. Math. Soc. 211, 377-389, 1975.
[23] H. M. Rodrigues and J. Sol-Morales, “A note on the relationship between spectral radius and norms of bounded linear operators”, Cardernos de Matematica 9, 61-65, 2008.
[24] H. R. Thieme, “Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity”, Siam J. Appl. Math. 70, No. 1, 188-211, 2009.
[25] A. C. Zaanen,” Introduction to operator theory in Riesz spaces”, Springer Science, 2012.
[26] W. Zhang, J. Hou, and X. F. Qi, “Maps preserving peripheral spectrum of generalized Jordan products of operators”, Acta Mathematica Sinica, English Series 31, No. 6, 953-972, 2015.

Citation :

Bernard Mutuku Nzimbi, Faith Muthoni Mwangi, Stephen Wanyonyi Luketero, "Remarks on the Peripheral Spectrum of Operators in Hilbert Spaces," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 11, pp. 63-72, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I11P506

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved