Volume 68 | Issue 12 | Year 2022 | Article Id. IJMTT-V68I12P504 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I12P504
Joseph Owuor Owino, "Lie Group Analysis of a KDV-Burgers Equation," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 12, pp. 16-35, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I12P504
[1] Bhrawy, A. H., Zaky, M. A., and Baleanu, D. New numerical approximations for space-time fractional burgers' equations via a legendre spectral-collocation method. Rom. Rep. Phys, 67 (2):340-349, 2015.
[2] Bluman, G. W. and Kumei, S. Symmetries and differential equations, volume 81. Springer Science & Business Media, 1989.
[3] Bluman, G. W., Cheviakov, A. F., and Anco, S. C. Applications of symmetry methods to partial differential equations, volume 168. Springer, 2010.
[4] Demiray, H. and Antar, N. Nonlinear waves in an inviscid fluid contained in a prestressed viscoelastic thin tube. Zeitschrift für angewandte Mathematik und Physik ZAMP, 48(2):325- 340, 1997.
[5] Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R. M. Korteweg-devries equation and generalizations. vi. methods for exact solution. Communications on pure and applied mathematics, 27(1):97-133, 1974.
[6] Golmankhaneh, A. K., Golmankhaneh, A. K., and Baleanu, D. Homotopy perturbation method for solving a system of schrödinger-korteweg-de vries equations. Rom. Rep. Phys, 63(3):609-623, 2011.
[7] Hassan, M. Exact solitary wave solutions for a generalized kdv-burgers equation. Chaos, Solitons & Fractals, 19(5):1201-1206, 2004.
[8] Ibragimov, N. H. Selected works. Volume 1-4. ALGA publications, Blekinge Institute of Technology, 2006-2009.
[9] Ibragimov, N. H. A new conservation theorem. Journal of Mathematical Analysis and Applications, 333(1):311-328, 2007.
[10] Ibragimov, N. H. A Practical Course in Differential Equations and Mathematical Modelling: Classical and New Methods. Nonlinear Mathematical Models. Symmetry and Invariance Principles. World Scientific Publishing Company, 2009.
[11] Johnson, R. A non-linear equation incorporating damping and dispersion. Journal of Fluid Mechanics, 42(1):49-60, 1970.
[12] Johnson, R. Shallow water waves on a viscous fluid the undular bore. The Physics of Fluids, 15(10):1693-1699, 1972.
[13] Lie, S. Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. BG Teubner, 1891.
[14] Noether, E. Invariant variations problem. Nachr. Konig. Gissel. Wissen, Gottingen. Math. Phys. Kl, pages 235-257, 1918.
[15] Olver, P. J. Applications of Lie groups to differential equations, volume 107. Springer Science & Business Media, 1993.
[16] Ovsyannikov, L. Lectures on the theory of group properties of differential equations. World Scientific Publishing Company, 2013.
[17] Owino, J. O. A group approach to exact solutions and conservation laws of classical burger's equation. International Journal of Mathematics And Computer Research, 10(9):2894-2909, 2022.
[18] Owino, J. O. Group invariant solutions and conserved vectors for a special kdv type equation. International Journal of Advanced Multidisciplinary Research and Studies, 2(5):9-26, 2022.
[19] Owino, J. O. An application of lie point symmetries in the study of potential burger's equation. International Journal of Advanced Multidisciplinary Research and Studies, 2(5):191-207, 2022.
[20] Owino, J. O. and Okelo, B. Lie group analysis of a nonlinear coupled system of korteweg-de vries equations. European Journal of Mathematical Analysis, 1:133-150, 2021.
[21] Owuor, J. Conserved quantities of a nonlinear coupled system of korteweg-de vries equations. International Journal of Mathematics And Computer Research, 10(5):2673-2681, 2022.
[22] Owuor, J. Exact symmetry reduction solutions of a nonlinear coupled system of korteweg-de vries equations. International Journal of Advanced Multidisciplinary Research and Studies, 2 (3):76-87, 2022.
[23] Owuor, J. Group analysis on one-dimensional heat equation. International Journal of Advanced Multidisciplinary Research and Studies, 2(5):525-540, 2022.
[24] P.E, H. Symmetry methods for differential equations: a beginner's guide, volume 22. Cambridge University Press, 2000.
[25] Ruderman, M. Method of derivation of the korteweg-de vries-burgers equation: Pmm vol. 39, n= 4, 1975, pp. 686-694. Journal of Applied Mathematics and Mechanics, 39(4):656-664, 1975.
[26] Shi, Y., Xu, B., and Guo, Y. Numerical solution of korteweg-de vries-burgers equation by the compact-type cip method. Advances in Dierence Equations, 2015(1):1-9, 2015.
[27] Soliman, A. A numerical simulation and explicit solutions of kdv-burgers' and lax's seventhorder kdv equations. Chaos, Solitons & Fractals, 29(2):294-302, 2006.
[28] Soliman, A. Exact solutions of kdv-burgers' equation by exp-function method. Chaos, Solitons & Fractals, 41(2):1034-1039, 2009.
[29] Su, C. H. and Gardner, C. S. Korteweg-de vries equation and generalizations. iii. derivation of the korteweg-de vries equation and burgers equation. Journal of Mathematical Physics, 10 (3):536-539, 1969.
[30] Van Wijngaarden, L. On the motion of gas bubbles in a perfect fluid. Ann. Rev. Fluid Mech, 4:369-373, 1972.
[31] Wang, M. Exact solutions for a compound kdv-burgers equation. Physics Letters A, 213(5-6): 279-287, 1996.
[32] Wang, Q. Homotopy perturbation method for fractional kdv-burgers equation. Chaos, Solitons & Fractals, 35(5):843-850, 2008.
[33] Wazwaz, A.-M. Partial differential equations and solitary waves theory. Springer Science & Business Media, 2010.