Factors of Composite 4n2+1 using Fermat’s Factorization Method

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2022 by IJMTT Journal
Volume-68 Issue-1
Year of Publication : 2022
Authors : Paul Ryan A. Longhas, Alsafat M. Abdul, Aurea Z. Rosal
  10.14445/22315373/IJMTT-V68I1P506

MLA

MLA Style: Paul Ryan A. Longhas, Alsafat M. Abdul, Aurea Z. Rosal. "Factors of Composite 4n2+1 using Fermat’s Factorization Method" International Journal of Mathematics Trends and Technology 68.1 (2022):53-60. 

APA Style: Paul Ryan A. Longhas, Alsafat M. Abdul, Aurea Z. Rosal(2022). Factors of Composite 4n2+1 using Fermat’s Factorization Method  International Journal of Mathematics Trends and Technology, 68(1), 53-60.

Abstract
In this article, we factor the composite 4n2+1 using Fermat’s factorization method. Consequently, we characterized all proper factors of composite 4n2+1 in terms of its form. Furthermore, the composite Fermat’s number is considered in this study.

Reference

[1] Mckee J. Speeding Fermat's Factoring Method. American Mathematical Society. Mathematics Computation. 68(228) 1729-1737.
[2] Lenstra HW Jr.. Factoring integers with elliptic curves. New Jersey. Annals of Mathematics; (1987).
[3] Krizek M, Luca F, Somer L. The Most Beautiful Theorems on Fermat Numbers. New York. Springer Science; (2002) 33-40.
[4] Rotman J. Galois Theory. First Edition. New York. Springer-Verlag New York Inc.; (1990).
[5] Burton DM. Elementary Number Theory. Sixth Edition. New York. McGraw-Hill Companies, Inc.; Chapter 9, The Quadratic Reciprocity Law; (2007) 190.
[6] Fraleigh JB. Katz V. A First Course in Abstract Algebra. Sixth Edition. Singapore. Pearson Education Asia Pte Ltd; Chapter 5, INTRODUCTION TO RINGS AND FIELDS; (2002) 304.
[7] Pomerance, C. A Tale of Two Sieves. Not. Amer. Math. Soc. 43 (1996) 1473-1485.
[8] Lehmer, D. H. and Powers, R. E. On Factoring Large Numbers. Bull. Amer. Math. Soc. 37 (1931) 770-776.
[9] Gardner, M. Patterns in Primes are a Clue to the Strong Law of Small Numbers. Sci. Amer. 243, Dec. (1980) 18-28.
[10] Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, (1979) 14-15 and 19.
[11] Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, (1998) P. 200.
[12] Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, (1987), 68-69 and 94-95.
[13] Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.
[14] Brent, R. P. Factorization of the Eighth Fermat Number. Amer. Math. Soc. Abstracts 1, (1980) 565.
[15] Brent, R. P. Factorisation of F10 http://cslab.anu.edu.au/~rpb/F10.html.
[16] Brent, R. P. "Factorization of the Tenth Fermat Number." Math. Comput. 68 (1999) 429-451.
[17] Brent, R. P. and Pollard, J. M. Factorization of the Eighth Fermat Number. Math. Comput. 36 (1981) 627-630.
[18] Brillhart, J.; Lehmer, D. H.; Selfridge, J.; Wagstaff, S. S. Jr.; and Tuckerman, B.Factorizations of b-n+/-1, b=2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers, rev. ed.
[19] Conway, J. H. and Guy, R. K. Fermat's Numbers. In The Book of Numbers. New York: Springer-Verlag, (1996) 137-141.
[20] Cormack, G. V. and Williams, H. C. Some Very Large Primes of the Form k. 2m+1. Math. Comput. 35 (1980) 1419-1421.
[21] Crandall, R.; Doenias, J.; Norrie, C.; and Young, J. The Twenty-Second Fermat Number is Composite. Math. Comput. 64(1995) 863-868.
[22] Crandall, R. E.; Mayer, E. W.; and Papadopoulos, J. S. The Twenty-Fourth Fermat Number is Composite. Math. Comput. 72 (2003) 1555-1572.
[23] Gardner, M. Patterns in Primes are a Clue to the Strong Law of Small Numbers. Sci. Amer. 243, Dec. (1980) 18-28.
[24] Krížek, M. and Somer, L. A Necessary and Sufficient Condition for the Primality of Fermat Numbers. Math. Bohem. 126 (2001) 541-549.
[25] Lenstra, A. K.; Lenstra, H. W. Jr.; Manasse, M. S.; and Pollard, J. M. The Factorization of the Ninth Fermat Number. Math. Comput. 61 (1993) 319-349.
[26] Shorey, T. N. and Stewart, C. L. On Divisors of Fermat, Fibonacci, Lucas and Lehmer Numbers, 2. J. London Math. Soc. 23(1981) 17-23.

Keywords : Fermat’s factorization, Fermat’s number, reducible polynomial, Compositeness, Eisenstein Criterion.