Volume 68 | Issue 1 | Year 2022 | Article Id. IJMTT-V68I1P515 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I1P515
Mark Adjei, Elphas Okango, Richard Puurbalanta, Henry Mwambi, Naiga Babra Charlotte, "A Geo-Classification Model for Mapping Mixed Discrete and Continuous Response Data: An Application to Poverty Mapping," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 1, pp. 143-157, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I1P515
[1] Aboagye-Attah, K. (2019). Socioeconomic correlates of poverty in Ghana using Ghana Living Standards Survey round 6 and 7. page 69.
[2] Alsharkawi, A., Al-Fetyani, M., Dawas, M., Saadeh, H., and Alyaman, M. (2021). Poverty classification using machine learning: The case of Jordan. Sustainability (Switzerland), 13(3):1–16.
[3] Beegle, K., Christiaensen, L., Dabalen, A., and Gaddis, I. (2016). Poverty in a rising Africa. The World Bank.
[4] Ben, R. and Kacem, H. (2012). The Determinants of Poverty by Cohort of Households : Evidence from Rural Tunisia. 36:33–37.
[5] Bogale, A. (2011). Analysis of poverty and its covariates among smallholder farmers in the eastern Hararghe highlands of Ethiopia. Journal of Development and Agricultural Economics, 3(4):157 – 164.
[6] Bukari, C., Essilfie, G., Aning-Agyei, M. A., Otoo, I. C., Kyeremeh, C., Owusu, A. A., Amuquandoh, K. F., and Bukari, K. I. (2021). Impact of COVID-19 on poverty and living standards in Ghana: A micro-perspective. Cogent Economics and Finance, 9(1).
[7] Cakmakyapan, S. and Goktas, A. (2013). a Comparison of Binary Logit and Probit Models With a Simulation Study. Journal of Social and Economic Statistics, 2(1):1–17.
[8] Chambers, R., Salvati, N., and Tzavidis, N. (2016). Semiparametric small area estimation for binary outcomes with application to unemployment estimation for local authorities in the UK. Journal of the Royal Statistical Society. Series A: Statistics in Society.
[9] Cooke, E., Hague, S., and McKay, A. (2016). The Ghana poverty and inequality report: Using the 6th Ghana living standards survey. University of Sussex, pages 1–43.
[10] Cressie, N. A. C. (1993). Statistics for Spatial Data. Journal of the Royal Statistical Society. Series A (Statistics in Society).
[11] Cressie, N. A. C. (1994). Statistics for Spatial Data, Revised Edition. Biometrics.
[12] Darmawan, D. (2019). poverty and shared prosperity 2018: Piecing together the poverty puzzle., volume 53.
[13] De Oliveira, V. (2000). Bayesian prediction of clipped Gaussian random fields. Computational Statistics and Data Analysis, 34(3):299–314.
[14] Dudek, H. and Lisicka, I. (2013). Determinants of poverty – binary logit model with interaction terms approach. Ekonometria, (41):65–77.
[15] Elbers, C., Lanjouw, J. O., and Lanjouw, P. (2003). Micro-level estimation of poverty and inequality. Econometrica, 71(1):355–364.
[16] Ennin, C. C., Nyarko, P. K., Agyeman, A., Mettle, F. O., and Nortey, E. N. N. (2011). Trend analysis of determinants of poverty in Ghana: Logit approach. Research Journal of Mathematics and Statistics, 3(1):20–27.
[17] Gaetan, C. and Guyon, X. (2010). Spatial statistics and modeling, volume 90. Springer.
[18] Gelman, A., Carlin, J. B. B., Stern, H. S. S., and Rubin, D. B. B. (2014). Bayesian Data Analysis, Third Edition (Texts in Statistical Science). Book.
[19] GSS (2019). Ghana Living Standards Survey round 7 (GLSS7), Main Report. Ghana Statistical Service, pages 1–343.
[20] Hobza, T. and Morales, D. (2016). Empirical best prediction under unit-level logit mixed models. Journal of official statistics, 32(3):661.
[21] Matheron, G. (1963). Principles of geostatistics. Economic Geology.
[22] Mdakane, B. P. (2019). Mapping of self-reported health among individuals between the ages of 15 – 49 years in South Africa .
[23] Molina, I., Nandram, B., and Rao, J. N. (2014). Small area estimation of general parameters with application to poverty indicators: A hierarchical bayes approach. Annals of Applied Statistics, 8(2):852–885.
[24] Pleis, J. R. (2018). Mixtures of discrete and continuous variables: Considerations for dimension reduction. pages 1–144.
[25] Puurbalanta, R. (2019). Spatial Cumulative Probit Model: An Application to Poverty Classification and Mapping. International Journal of Statistical Distributions and Applications, 5(1):15.
[26] Puurbalanta, R. (2020). A Clipped Gaussian Geo-Classification model for poverty mapping. Journal of Applied Statistics, 0(0):1–14.
[27] Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society. Series B: Statistical Methodology.
[28] Sriyalatha, A. M. K. (2019). Determinants of Poverty Among Households in Monaragala District , Sri Lanka Africa. IRE Journals, 2(7):64–74.
[29] Switzer, P. (1977). Estimation of spatial distributions from point sources with application to air pollution measurement. Technical report No. 9. Technical report.
[30] World Bank (2020). Supporting Countries in Unprecedented Times. Annual Report 2020, pages 1–106