Volume 68 | Issue 2 | Year 2022 | Article Id. IJMTT-V68I2P502 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I2P502
We characterise the distributions generated from the boundary values of functions from Smirnov spaces
[1] Bremermann H, Distribution, Complex Variables and Fourier Transforms, Addison –Wesley Publishing Co., Inc., Reading, Massachusetts-London. (1965).
[2] Beltrami E.J., Wohlers M.R, Distributions and the boundary values of analytic functions, Academic Press, New York, (1966).
[3] Campos J. Ferreira, Introduction to the Theory of Distributions, Logman, Essex. (1997).
[4] Carmichael R, Mitrović D, Distributions and analytic functions, Pitman Research Notes in Mathematics Series, 206, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York. (1989).
[5] Dimovski P, Pilipovic S, Vindas J, New distribution spaces associated to translation-invariant Banach spaces, Monatsh Math 177 (2015) 495-515.
[6] Duren P. L, Theory of Hp Spaces, Acad. Press, New York, (1970).
[7] Estrada R. and Kanwal R. P., Distributional boundary values of harmonic and analytic functions, J. Math. Anal. Appl., 89 (1982) 262-289.
[8] Iseni E., Rexhepi Sh., Bedzeti B., Jumps of distributions of class DL2C by derivates of analytic representations, International J. of Math. Sci. & Engg. Appls. (IJMSEA). 12(2) (2018) 23-27.
[9] Jantcher L, Distributionen, Walter de Gruyter Berlin, New York. (1971).
[10] Kvernadze G, Determination of the jumps of a bounded functions by its Fouriev series, J. Approx. Theory. 92 (1998) 167-190.
[11] Lojasiewicz S., Sur la valeur et la limite d΄une distribution en un point, Studia Math. 16 (1957).
[12] Manova-Erakovic V, Reckoski V, A note on the analytic representations of convergent sequences in S', University of Nis, Serbia, 29(6) (2015) 1419-1424.
[13] Manova-Erakovik V., Reckovski V., A Note on the analytic representations of sequences in L2(R) space, Proceedings of the Sixth International Scientific Conference-FMNS 2015, South-West University “Neofit Rilski”, Blagoevgrad, Bulgaria, (2015) 57-61.
[14] Manova Erakovik V., Pilipovic, S., Reckovski V., Analytic representations of sequences in LP spaces, 1≤p<∞ , University of Nis, Serbia, 31(7) (2017) 1959-1966.
[15] Manova E. V., Bounded subsets of distributions in D' generated with boundary values of functions of the space Hp, 1≤ p<∞ , Annual Proceedings of the Institute of Mathematics, yearbook.(2001) 31-40.
[16] Manova E. V., Distributions generated by boundary values of functions of the Nevanlina class N, Matematichki vesnik, Knjiga 54, Sveska 3-4, Beograd, Srbija i Crna Gora. (2002) 133-138.
[17] Mochizuki N, Nevanlinna and Smirnov classes on the upper half plane, Hocaido Math.J. 20 (1991) 609-620.
[18] Pilipović S. and Stanković B., Teorija Distribucija, Novi Sad. (1983).
[19] I. I. Privalov, Boundary properties of single-valued analytic functions,Nauka, Moskva,(1941).
[20] R. K. Joshi, V. Kumar, Logistic Chen Distribution with Properties and Applications, International Journal of Mathematics Trends and Technology 67(1) (2021) 141-151.
[21] R. Meštrović and Z. Pavićević, On some metric topologies on Privalov spceson the unit disc, Math. FA. (2015).
[22] R. Meštrović and Z. Pavićević, Topologies on some subclasses of the Smirnov class, Acta Sci. Math. (Szeged). 69 (2003) 99–108.
[23] Reckovski V., Manova-Erakovikj V., Iseni E., Convergence of sequences of functions in DLp and DLp,h, 1£p<¥ through their analytic representations, IJMTT, 45(2) (2017) 62-70.
[24] Schwartz L, Thėorie des distributions, Hermann, Paris, (1966).
[25] Yasuo Iida, Bounded Subsets of Smirnov and Privalov Classes on the Upper Half Plane, Hindawi International Journal of Analysis. (2017).
[26] Y. Gambo, K.O. Babalola, A. U. Mustapha, D. E. Emmanuel. Some Properties of Analytic and P-Valent Functions Involving Certain Convolution Operators, International Journal of Mathematics Trends and Technology 67(10) (2021) 34-40.
Mejdin Saliji, Egzona Iseni, Vesna Manova Erkovikj, "Distributions Generated from Functions in Smirnov Spaces as Boundary Values of Holomorphic Functions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 2, pp. 7-11, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I2P502