Volume 68 | Issue 2 | Year 2022 | Article Id. IJMTT-V68I2P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I2P505
The conformally flat spherically symmetric charged perfect fluid distribution model in time – independent gravitational field is obtained in this paper. The electromagnetic field is present in the model and it is an accelerating universe with negative pressure. The other physical properties of the model are also discussed.
[1] Beem J. K., Ehrlich P. E. and Easley K. L., Global Lorentzian Geometry, Pure Appl. Math. 2nd Edition, Marcel Dekker, New York, 202 (1996).
[2] Hawking S. W. and Ellis G. F. R., The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, (1973).
[3] O’Neill B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press Inc., New York, (1983).
[4] Patel L. K. and Dadhich N., A Class of Stationary Rotating String Cosmological Models, J. Pramana, 47 (1996) 387–392.
[5] Chakraborty S. and Roy A., String Cosmology in a Stationary Cylindrically Symmetric Space-time, J. Astrophys. Space Sci, 262 (1999) 245–248.
[6] Beig R. and Schmidt B., Time – Independent Gravitational Fields, Lect. Notes Phys, 540 (2000) 325–372.
[7] Nayak K. R., Einstein Equations and Inertial Forces in Axially Symmetric Stationary Space-times, Gen Relativ Gravit , 41 (2009) 2737–2756.
[8] Borkar M. S. and Dhongle P. R., Bianchi Type I Sring Dust Model with Magnetic Field in Stationary Space-time, Int. J. of Applied Mathematics, 23(6) (2010) 977–988.
[9] Dhongle P. R., The de-Sitter Model with Dark Energy, J. Research in Applied Mathematics, 7(11) (2021) 33–39.
[10] Xanthopoulos B. C., Exterior Space - Times for Rotating Stars, J. Math. Phys., 22(6) (1981) 1254–1259.
[11] Ferrando J. J., Morales J. A. and Portilla N., Conformally Stationary Cosmological Models, Lect. Notes Phys., 423 (1993) 287–290.
[12] Marklund M. and Perjes Z., Stationary Rotating Matter in General Relativity, J. Math. Phys., 38(10) (1997) 5280–5292.
[13] Garcia A. A. and Campuzano C., Conformally Flat Stationary Axisymmetric Space-times, Physical Review D, 66 (2002) 124018.
[14] Wu. X. and Shang Y., On Newman – Penrose Constants of Stationary Space-times, arXiv: gr – qc/0612109v1, (2006).
[15] Borkar M. S. and Dhongle P. R., Cylindrically Symmetric Inhomogeneous String Cosmological Model with Magnetic Field in Stationary Space-time, American J. Pure & Applied Mathematics, 2(1) (2013) 37–42.
[16] Borkar M. S. and Dhongle P. R., Pre – Hawking Radiating Gravitational Collapse in Stationary Space-time, Int. J. Theoretical & Applied Sciences , 5(2) (2013) 27–31.
[17] Pandey S. N. and Tiwari R., Conformally Flat Spherically Symmetric Charged Perfect Fluid Distrribution in General Relativity, Indian J. Pure Appl. Math., 12 (2) (1981) 261–264.
[18] Pradhan A. and Pandey O. P., Conformally Flat Spherically Symmetric Cosmological Models – Revisited, arXiv: gr – qc/0211008v1 , (2002).
[19] Moradpour H. and Riazi N., Dynamic Conformal Spherically Symmetric Solutions in an Accelerated Background, Romanian Reports in Phys., 68(4) (2016) 1382–1396.
[20] Takisa P. M., Maharaj S. D., Manjonjo A. M. and Moopanar S., Spherical Conformal Models for Compact Stars, Eur. Phys. J. C., 77 (2017) 713.
[21] Landau L. D. and Lifshitz E. M., The Classical Theory of Fields, Fourth Revised Edition, Pergamon Press, Oxford, (1975).
[22] Ellis G. F. R., General Relativity and Cosmology, ed. by R. K. Sachs, Academic Press, New York ,(1971).
Prashant R. Dhongle, "Conformally Flat Spherically Symmetric Model in Time – Independent Gravitational Field," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 2, pp. 28-31, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I2P505