Volume 68 | Issue 2 | Year 2022 | Article Id. IJMTT-V68I2P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I2P505
Prashant R. Dhongle, "Conformally Flat Spherically Symmetric Model in Time – Independent Gravitational Field," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 2, pp. 28-31, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I2P505
[1] Beem J. K., Ehrlich P. E. and Easley K. L., Global Lorentzian Geometry, Pure Appl. Math. 2nd Edition, Marcel Dekker, New York, 202 (1996).
[2] Hawking S. W. and Ellis G. F. R., The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, (1973).
[3] O’Neill B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press Inc., New York, (1983).
[4] Patel L. K. and Dadhich N., A Class of Stationary Rotating String Cosmological Models, J. Pramana, 47 (1996) 387–392.
[5] Chakraborty S. and Roy A., String Cosmology in a Stationary Cylindrically Symmetric Space-time, J. Astrophys. Space Sci, 262 (1999) 245–248.
[6] Beig R. and Schmidt B., Time – Independent Gravitational Fields, Lect. Notes Phys, 540 (2000) 325–372.
[7] Nayak K. R., Einstein Equations and Inertial Forces in Axially Symmetric Stationary Space-times, Gen Relativ Gravit , 41 (2009) 2737–2756.
[8] Borkar M. S. and Dhongle P. R., Bianchi Type I Sring Dust Model with Magnetic Field in Stationary Space-time, Int. J. of Applied Mathematics, 23(6) (2010) 977–988.
[9] Dhongle P. R., The de-Sitter Model with Dark Energy, J. Research in Applied Mathematics, 7(11) (2021) 33–39.
[10] Xanthopoulos B. C., Exterior Space - Times for Rotating Stars, J. Math. Phys., 22(6) (1981) 1254–1259.
[11] Ferrando J. J., Morales J. A. and Portilla N., Conformally Stationary Cosmological Models, Lect. Notes Phys., 423 (1993) 287–290.
[12] Marklund M. and Perjes Z., Stationary Rotating Matter in General Relativity, J. Math. Phys., 38(10) (1997) 5280–5292.
[13] Garcia A. A. and Campuzano C., Conformally Flat Stationary Axisymmetric Space-times, Physical Review D, 66 (2002) 124018.
[14] Wu. X. and Shang Y., On Newman – Penrose Constants of Stationary Space-times, arXiv: gr – qc/0612109v1, (2006).
[15] Borkar M. S. and Dhongle P. R., Cylindrically Symmetric Inhomogeneous String Cosmological Model with Magnetic Field in Stationary Space-time, American J. Pure & Applied Mathematics, 2(1) (2013) 37–42.
[16] Borkar M. S. and Dhongle P. R., Pre – Hawking Radiating Gravitational Collapse in Stationary Space-time, Int. J. Theoretical & Applied Sciences , 5(2) (2013) 27–31.
[17] Pandey S. N. and Tiwari R., Conformally Flat Spherically Symmetric Charged Perfect Fluid Distrribution in General Relativity, Indian J. Pure Appl. Math., 12 (2) (1981) 261–264.
[18] Pradhan A. and Pandey O. P., Conformally Flat Spherically Symmetric Cosmological Models – Revisited, arXiv: gr – qc/0211008v1 , (2002).
[19] Moradpour H. and Riazi N., Dynamic Conformal Spherically Symmetric Solutions in an Accelerated Background, Romanian Reports in Phys., 68(4) (2016) 1382–1396.
[20] Takisa P. M., Maharaj S. D., Manjonjo A. M. and Moopanar S., Spherical Conformal Models for Compact Stars, Eur. Phys. J. C., 77 (2017) 713.
[21] Landau L. D. and Lifshitz E. M., The Classical Theory of Fields, Fourth Revised Edition, Pergamon Press, Oxford, (1975).
[22] Ellis G. F. R., General Relativity and Cosmology, ed. by R. K. Sachs, Academic Press, New York ,(1971).