Volume 68 | Issue 2 | Year 2022 | Article Id. IJMTT-V68I2P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I2P507
This paper is an analysis of the Collatz conjecture, and the sequences generated through recursive use of the rules used for generating those numbers. Analysis of other embedded sequences will also be looked at that lead to the Binomial Distribution.
[1] J J O’Connor and E F Robertson Lothar Collatz (https://mathshistory.st-andrews.ac.uk/Biographies/Collatz/).
[2] Patrick Honnor The Simple Math Problem We Still Can’t Solve (https://www.quantamagazine.org/why-mathematicians-still-cant-solve-the-collatz-conjecture-20200922/).
[3] 3.3.2 – Binomial Random Variables (https://online.stat.psu.edu/stat500/lesson/3/3.2/3.2.2).
[4] Binomial Expansion (http://hyperphysics.phy-astr.gsu.edu/hbase/alg3.html).
[5] H. Hasse, Unsolved Problems in Elementary Number Thory, Lectures at U. Maine ,Orono, Spring 1975, dittoed notes, (1975) 23-33. He states .
[6] E. Heppner, Eine Bemerkung zum Hasse-Syracuse Algorithmus, Archiv. Math., 31 (1978) 317-320. MR 80d. 100007.
[7] S.D. Isard and A. M. Zqicky, Three open questions in the theory of one-symbol Smullyan systems. SIGACT News (1969 11-14.
[8] S. Kakutani, private communications, (1981).
[9] G. M. Leigh and K. R. Matthews, A generalization of the Syracuse algorithm to Fa[x], preprint.
[10] K.R. Matthews and A.M. Wattz, A genrealization of Hasse’s generalization of the Syracuse algorithm, Acta Arith., 43 (1983) 75-83.
[11] J. Nievergelt, J. Farrar, and E.M. Reingold, Computer Approaches to Mathematical Problems, Prentice0Hall Englewood Cliffs, NJ, (1974) 211-217.
[12] C. Stanley Ogilvy, Tomorrow’s Math, Oxford Univ. press, Oxford, (1972) 103.
[13] A.D. Pollington, Intervals Constructions in the Theory of Numbers, Thesis, University of London, (1980).
[14] L. Ratzan, Some work on an unsolved palindromic algorithm, Pi Mu Epsilon J., 5 (Fall 1973) 463-466.
[15] D. A. Rawsthorne, Imitation of an Iteration, preprint.
[16] D. Shanks, Comments on Problems 63-13, SIAM Review, 7 (1965) 284-286.
[17] R.P. Steiner, A Theorem on the Syracuse Problem, Proc. 7th Manitoba Conference on Numerical Mathematics – 1977, Winnipeg, (1978) 553-559.
[18] R. Terras, A stopping time problem on the positive integers, Acta Arith. 30 (1976) 241-252.
[19] R. Tijdeman, Det Kongelige Norske Videnskabers Selskak, Skrifter, 16 (1972).
[20] C.W. Trigg, C.W. Dodge, and L.F. Meyers, Comments on Problem 133, Eureka (now Crux Mathematicorum) 2(7) (1976) 144-150.
[21] C. Williams, B. Thwaites, A. van der Poorten. W. Edwards, and L. Williams,m Ulam’s Conjecture continued again, 1000 pounds for proof, Rumored proof disclaimed, Reference, PPC Calculator J., 9 (1982) 23-24.
[22] M. Yamada, A convergence proof about an integral sequence, Fibonacci Quart, 18 (1980) 231-242.
[23] Anon, The 3x+1 problem, Popular Computing, 1 (1973) 1-2.
[24] Anon., 3x+1 strings, Popular Computing, 2 (1973) 6-7.
Eric S. Watson, Douglas L. Mc Cue Jr., "The Stabilization of Sequences from the Collatz Conjecture," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 2, pp. 43-46, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I2P507