Volume 68 | Issue 2 | Year 2022 | Article Id. IJMTT-V68I2P509 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I2P509
In this paper, we study the existence of solutions ๐ฅ for an initial value problem of a general implicit differential equation with parameter in the two classes ๐ฅ โ ๐ถ 1 [0, ๐] and ๐ฅ โ ๐ด๐ถ[0, ๐]. The maximal and minimal solution will be proved. The uniqueness of the solution will be proved. The continuous dependence of the unique solution will be studied.
[1] Agarwal, Ravi P., Donal OโRegan, An Introduction to Ordinary Differential Equations, Springer Science & Business Media, ( 2008).
[2] P. Andrzej, On Some Iterative-Differential Equations I, Zeszyty Naukowe Uniwersytetu Jagiellonskiego, Prace Matematyczne, 12 (1968) 53โ56.
[3] N. Dunford, J. T. Schwartz, Linear Operators, (Part 1), General Theory, New York Inter Science, (1957).
[4] R. Haloi, P. Kumar, D. N. Pandey, Sufficient Conditions for The Existence and Uniqueness of Solutions to Impulsive Fractional Integro-Differential Equations with Deviating Arguments, Journal of Fractional Calculus and Applications, 5 (2014) 73โ84.
[5] Jankowski, T, Differential Equations with Integral Boundary Conditions,Journal of Computational and Applied Mathematics, 147 (2002) 1-8.
[6] L. V. Kantorovich, G. P. Akilov, Functional Analysis, (Translated By Howard L. Silcock), Pergamon Press, New York, (1982).
[7] M. Lauran, Existence Results for Some Differential Equations With Deviating Argument, Filomat, 25 (2011) 21โ31.
[8] Lakshmikantham, V and Leela, S., Existence and Monotone Method for Periodic Solutions of First Order Differential Equations, Journal of Mathematical Analysis and Applications, 91(1983) 237-243.
[9] Liu, H. And JIANG, D., Two-Point Boundary Value Problem for First Order Implicit Differential Equations, Hiroshima Math Journal, 30(2000) 21-27.
[10] Liu, B., Existence and Uniqueness of Solutions to First-Order Multipoint Boundary Value Problems Applied Mathematics Letters, 17(2004) 1307-1316
[11] B. Liu, New Results on The Positive Almost Periodic Solutions for A Model of Hematopoiesis, Nonlinear Anal. RWA, 17 (2014) 252โ264.
[12] M. Mackey, L. Glass, Oscillations and Chaos in Phycological Control Systems, Sciences, 197 (1987) 287โ289.
[13] I. P. Natanson, Theory of Functions of a Real Variable, Frederick Ungar Publishing Co, New York with Dynamically Varying Instar Duration, Theoret. Population Biol, 23 (1983) 114โ135.
[14] M. Podisuk, On Simple Iterative Ordinary Differential Equations, Science Asia, 28 (2002) 191โ198.
[15] M. Podisuk, More on Simple Iterative Ordinary Differential Equation, Procedia Social and Behavioral Sciences, 88 (2013) 187โ195.
A.M.A. EL-Sayed, M.Sh. Mohamed, A. Basheer, "On a General Integro Differential Equation with Parameter," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 2, pp. 52-60, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I2P509