Volume 68 | Issue 3 | Year 2022 | Article Id. IJMTT-V68I3P504 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I3P504
Siddiga Abdalla Osman, "Numerical Solutions for Nonlinear Volterra Integral Equations of the Second Kind with a Domain Decomposition and Modified Decomposition Methods," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 3, pp. 15-20, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I3P504
[1] P. Linz, Analytical and Numerical Methods for Volterra equations. Society for Industrial and Applied Mathematics, (1985).
[2] R.P. Kanwal, Linear Integral Equations Theory and Technique. Boston, (1996).
[3] K.E.Atkinson, The Numerical Solution of Integral Equation of the Second Kind. Cambridge, (1997).
[4] A.M. Wazwaz, Linear and Nonlinear Integral Equations: Methods and Applications. Springer ,(2011).
[5] L. Gabet, The Decomposition Method and Distributions. Computers & Mathematics with Applications, 27(3) (1994) 41-49.
[6] S. N. Venkatarangan, & K. Rajalakshmi, A Modification of a Domain's Solution for Nonlinear Oscillatory Systems. Computers & Mathematics with Applications, 29(6) (1995) 67-73.
[7] A.M. Wazwaz, A Reliable Modification of Decomposition Method, Appl. Math. Comput. 102 (1999) 77–86.
[8] A.M. Wazwaz, A Reliable Treatment for Mixed Volterra–Fredholm Integral Equations, Appl. Math. Comput. 127 (2002) 405–414.
[9] A.M. Wazwaz, The Numerical Solution of Special Fourth-Order Boundary Value Problems by the Modified Decomposition Method, Int.J. Comput. Math. 79(3) (2002) 345–356.
[10] A.M. Wazwaz, A First Course in Integral Equations, World Scientific, (1997).
[11] A.M. Wazwaz, Partial Differential Equations: Methods and Applications, Balkema, Netherlands, (2002).
[12] A.M. Wazwaz, A Reliable Technique for Solving the Weakly Singular Second-Kind Volterra-Type Integral Equations, Appl. Math. Comput. 80 (1996) 287–299.
[13] A.M. Wazwaz, Analytical Approximations and Pade’ approximants for Volterra’s Population Model, Appl. Math. Comput. 100 (1999) 13–25.
[14] A.M. Wazwaz, the Modified Decomposition Method and Pade’ Approximants for Solving Thomas–Fermi equation, Appl. Math.Comput. 105 (1999) 11–19.
[15] A.M. Wazwaz, A new algorithm for calculating A Domain Polynomials for Nonlinear Operators, Appl. Math. Comput. 111 (2000) 53–69.
[16] G. A domain, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, 1994.
[17] G. A domain, A review of the Decomposition Method and Some Recent Results for Nonlinear Equation, Math. Comput. Modell. 13(7) (1992) 17–43.
[18] G. A domian, The Decomposition Method for Nonlinear Dynamical Systems. Journal of mathematical analysis and applications, 120(1) (1986) 370-383.
[19] K. Maleknejad, K. Nouri, &R. Mollapourasl, Existence of solutions for some nonlinear integral equations. Communications in Nonlinear Science and Numerical Simulation, 14(6) (2009) 2559-2564.
[20] L. J. Xie, A New Modification of a Domain Decomposition Method for Volterra Integral Equations of the Second Kind. Journal of Applied Mathematics, (2013).
[21] H. H., Ali, &F. Abdelwahid, Modified A Domain Techniques Applied to Non-Linear Volterra Integral Equations. (2013).
[22] A. Jerri, Introduction to Integral Equations with Applications, Wiley, New York, (1999).
[23] R.K. Miller, Nonlinear Volterra Integral Equations, W.A. Benjamin, Menlo Park, CA, (1967).
[24] H. Brunner, On the Numerical Solution of Nonlinear Volterral–Fredholm Integral Equation bBy Collocation Methods, SIAM J. Numer. Anal. 27 (4) (1990) 987–1000.
[25] L. Hacia, On Approximate Solution for Integral Equations of Mixed Type, ZAMM. Z. Angew. Math. Mech. 76 (1996) 415–416.