Volume 68 | Issue 4 | Year 2022 | Article Id. IJMTT-V68I4P513 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I4P513
Received | Revised | Accepted |
---|---|---|
17 Mar 2022 | 19 Apr 2022 | 30 Apr 2022 |
Explicit expressions for all the 2n(d+1)+4 Cyclotomic Cosets in the ring where p, q, l are distinct odd primes with gcd are obtained.
[1] S.K.Arora, M.Pruthi, Minimal Cyclic Codes of Prime Power Length, Finite Fields Appl. 3 (1997) 99-113.
[2] S.K. Arora, M. Pruthi, Minimal Cyclic Codes of Length 2pn Finite Fields Appl. 5 (1999) 177-187.
[3] Anuradha Sharma, G.K.Bakshi, V.C. Dumir, M. Raka, Cyclotomic Numbers and Primitive Idempotents in the Ring GF(l) [x]/<xpn-1>", Finite Fields Appl. 10 (2004) 653-673.
[4] G.K.Bakshi, Madhu Raka, Minimal Cyclic Codes of Length pnq , Finite Fields Appl. 9 (2003) 432-448.
[5] G.K.Bakshi, Madhu Raka, Idempotent Generators of Irreducible Cyclic Codes, Ramanujan Math Soc, Mysor. (2008) 13-18.
[6] Ranjeet Singh, M.Pruthi, Primitive Idempotents of Irreducible Quadratic Residue Cyclic Codes of Length pn qm, International Journal of Algebra. 5 (2011) 285-294.
[7] Ian F. Blare, Permutation Codes For Discrete Channel, IEEE Trans. Inform. Theory. 20 (1974) 138-140.
[8] Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers, John Wiley and Sons Inc, New York. (1960).
[9] J. E. Bartow, A Reduced Upper Bound on the Error Ability of Codes, IEEE Trans. Inform. Theory. 9 (1963) 46.
[10]J. E. Bartow, A upper Bound on the Error Ability of Codes, IEEE Trans. Inform. Theory. 9 (1963) 290.
[11]J. H. Conway and N. J. A. Sloane, Self Dual Codes over the Integers Modulo 4, J. Comb. Theory (A). 62 (1993) 30-45.
[12]J. H. Conway, R. T. Curtis, P. S. Nortan, R. A. Parker and R. A. Wilson, Atlas of the finite Groups, Oxford, U. K. Clarendon Press. (1985).
[13]J. H. Humphreys and M. Y. Prest, Numbers, Groups, and Codes, Cambridge University Press, Cambridge, New York. (1989).
[14]J. H. VanLint and F. J. MacWilliams, Generalised Quadratic Residue Codes, IEEE Trans. Inform. Theory. 24(6) (1978) 730-737.
[15]H. Girrifin, Elementary Theory of Numbers, MaGraw-Hill book Company, New York. (1954).
[16]H. Janwa and A. K. Lal, On the Generalized Hamming Weights of Cyclic Codes, IEEE Trans. Inform. Theory. 43(1) (1997) 299-308.
[17]H. N. Ward, Quadratic Codes of Length 27, IEEE Trans. Inform. Theory. 36(4) (1990) 950-953.
[18]H. N. Ward, Quadratic Residue Codes and Symplectic Groups, Journal of Algerba. 29 (1974) 150-171.
[19]I. F. Blake, Algebraic Coding Theory, History and Developments, Dowdes, Hustechson and Ross, Inc. Stroudsberg. (1973).
[20]I. F. Blake and R. C. Mullin, The Mathematical Theory of Coding, Academic Press, New York. (1975).
[21]Ranjeet Singh, Some Results in the Ring R2pnq = GF(l)[x] / (x2pnqm - 1) International Journal of Mathematics Trends and Technology. 35(1)(2016) 32-37.
Ranjeet Singh, "Cyclotomic Cosets in the Ring R2pnq = GF(l)[x] / (x2pnq - 1) (n>=1)," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 4, pp. 84-86, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I4P513