Volume 68 | Issue 4 | Year 2022 | Article Id. IJMTT-V68I4P515 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I4P515
Received | Revised | Accepted |
---|---|---|
19 Mar 2022 | 21 Apr 2022 | 26 Apr 2022 |
Abidha Monica Gwecho, Wang Shu, Onyango Thomas Mboya, "Stabilized Finite Element Method for Poisson Nernst-Planck Equations with Steric Effects for Ion Transport," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 4, pp. 94-101, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I4P515
[1] M. Abidha, W. Shu, and T. Onyango, Existence of Approximate Solution for Modified Poisson Nernst-Planck Equation Describing Ion Flow in Cell Membranes. Amer. Journ. of Comp. Math. 10 (2020) 473–484.
[2] M. Abidha, S. Wang, and T. Onyango, Numerical Approach for Determing Impact of Steric Effects in Biological Ion Channel, Journ. of Appl. and Comp. Math. 9(4) 2020.
[3] L. Benzhuo and Y. C. Zhou, Poisson Nernst Equations for Simulating Bio-Molecular Diffusion-Reaction Processes II: Size Effects on Ionic Distributions and Diffusion-Reaction Rates, Biophysica. J. 100(10) (2011) 2475–2485.
[4] T. Bin, Y. Xie, L. Zhang, and L. Benzhou, Stabilized Finite Element Methods to Simulate the Conductance of Ion Channels, Comp. Physics Commnctns. 188 (2015) 131–139.
[5] A. Brooke and T. Hughes, Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations, Comput. Methds. in Appl. Mech. and Engrg. 32(1-3) (1982) 199–259.
[6] M. Burger, B. Schlake, and M.-T. Wolfram, Nonlinear Poisson-Nernst-Planck Equations for Ion Flux Through Confined Geometries, Lond. Math. Soc. 25(4) (2012) 961–990.
[7] L. Chun, M. Metti, and X. Jinchao, Energetically Stable Discretizations for Charge Carrier Transport and Electrokinetic Models, J. of Compt. Phys. 306 (2016) 1–18.
[8] X. Dexuan and C. Zhen, A Finite Element Iterative Solver for a PNP Ion Channel Model with Neumann Boundary Condition and Membrane Surface Charge, Journ. of Comp. Phy. 423 (2020) 109915.
[9] B. Eisenberg, Ionic Channels in Biological Membranes-Electrostatic Analysis of Natural Nanotube, Contemp. Phys. 39(6) (1998) 447–466.
[10] L. Franca, H. Guillermo, and M. Arif, Revisiting Stabilized Finite Element Methods for Advective-Diffusive Equations, Comput. Methds. Appl. Mech. Engrg. 195 (2006) 1560–1572.
[11] L. Hailliang and W. Zhongming, A Free Satisfying Discontinous Galerkin Method for One Dimensional Poisson Nernst-Planck Systems, Journ. of Comp. Phy. 328 (2017) 413–437.
[12] L. Hongliang, W. Qin, L. Benzhou, and Z. Linbo, A Stabilized Finite Element Method for Poisson-Nernst-Planck Equations in Three Dimensional Ion Channel Simulations. Appl. Math. Lett. 111 (2021) 106652.
[13] D. Meng, Z. Bin, L. Guang, and L. S. Maria, Numerical Solution of 3d Poisson Nernst-Planck Equations Coupled with Classical Density Function Theory for Modelling Ion and Electron Transport in a Confined Environment, Commun. Comput. Phys. 16(5) (2014) 1298– 1322.
[14] J. Miller, W. Schilders, and S. Wang, Application of Finite Element Methods to the Simulation of Semiconductor Devices, Rep. on Prog. in Phys. 62(3) (1999) 277–353.
[15] L. Pichler, A. Masud, and L. Bergman, Numerical Solution of the Fokker-Planck Equations by Finite Difference and Finite Element Methods-A Comparative Study, Comput. Methds in Struc. Dyn. and Earthq. Engrg. 195 (2011) 1560–1572.
[16] Y. Qian, X. Liu, M. Chen, and L. Benzhou, A Local Approximation of Fundamental Measure Theory Incorporated Into Three Dimensional Poisson-Nernst Planck Equations to Account for Hard-Sphere Repulsions Among Ions, J.Stat.Physics. 163 (2016) 156–174.
[17] J. Rodrigo and V. Kovtunenko, Entropy Method for Generalized Poisson-Nernst-Planck Equations, Anal. and Math. Phys. 8(4) (2018) 603–619.
[18] H. Selcuk, The Finite Element Method Over a Simple Stabilized Grid Applied to Fluid Flow Problems, Phd Thesis Middle East Technical University. (2008).
[19] L. Tai-chia and B. Einsenberg, A New Approach to the Lennard-Jones Potential and a New Model: PNP-Steric Equations, Commctn. in Mathcal. Sci. 12(1) (2013) 149–173.
[20] J. Miller, W. Schilders, and S. Wang, Application of Finite Element Methods to the Simulation of Semiconductor Devices, Rep. on Prog. in Phys. 62(3) (1999) 277–353.
[21] Y. Xie, J. Cheng, L. Benzhou, and L. Zhang, Parallel Adaptive Finite Element Algorithms for Solving the Coupled Electro-Diffusion Equations, Mol. Based Math. Biol. 1 (2013) 90–108.
[22] T. Tezduyar, Stabilized Finite Element Formulations for Incompressible Flow Computrations, Adv. in Appl. Mech. 28 (1992) 1–44.
[23] H. Tzyy-Leng, L. Tai-chin, L. Chun, and B. Eisenberg, PNP Equations with Steric Effects, A Model of Ion Flow through Channels, J. Physica. Chem. 116(37) (2012) 11422– 11441.
[24] Y. Vladmir, M. Kiselev, I. Lobanov, D. Marenduzzo, and B. Goryachev, Lateral Dynamics of Charged Lipids and Peripheral Proteins in Spatially Heterogeous Membranes: Comparison of Continous and Monte Carlo Approaches, J. Chem. Physics. 135 (2011) 155103.
[25] H. Yunkyong, B. Eisenberg, and C. Liu, A Mathematical Model for Hard Sphere Repulsion in Ionic Solutions, Commun. Math. Sci. 9(2) (2011) 459–475.
[26] W. Zhongming, Z. Shenggao, D. Jie, and H. Sun, Computational Study on Hysteresis of Ion Channels: Multiple Solutions to Steady State Poisson-Nernst Planck Equations, Commun. Comput. Phys. 23 (2018) 1549–1572.