Volume 68 | Issue 6 | Year 2022 | Article Id. IJMTT-V68I6P502 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I6P502
| Received | Revised | Accepted | Published |
|---|---|---|---|
| 07 Apr 2022 | 25 May 2022 | 04 Jun 2022 | 14 Jun 2022 |
Subodh Pratap Singh, Amardeep Singh, "Time-Fractional Fornberg-Whitham Equation Solved by Fractional Homotopy Perturbation Transform Method," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 6, pp. 8-16, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I6P502
[1] K.B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, (1974).
[2] K. Diethelm, Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, (2010).
[3] I. Podlubny, Fractional Differential Equations, Academic Press, New York, (1999).
[4] V.E. Lynch, B.A. Carreras, D. Del-Castillo-Negrete, K.M. Ferriera-Mejias, H.R. Hicks, Numerical Methods for the Solution of Partial Differential Equations of Fractional Order, J. Comput. Phys. 192 (2003) 406–421.
[5] M.M. Meerschaert, C. Tadjeran, Finite Difference Approximations for Two-Sided Space-Fractional Partial Differential Equations, Appl. Numer. Math, 56 (2006) 80–90.
[6] C. Tadjeran, M.M. Meerschaert, A Second-Order Accurate Numerical Method for the Two-Dimensional Fractional Diffusion Equation, J. Comput. Phys, 220 (2007) 813–823.
[7] K. Diethelm, N.J. Ford, A.D. Freed, Detailed Error Analysis for A Fractional Adams Method, Numer. Algorithms, 36 (2004) 31–52.
[8] Q. Wang, Homotopy Perturbation Method for Fractional Kdv Equation, Appl. Math. Comput,190 (2007) 1795–1802.
[9] H. Bulut, Comparing Numerical Methods for Boussinesq Equation Model Problem, Numer. Methods Partial Differ. Equ,. 25 (4) (2009) 783–796.
[10] P.K. Gupta, M. Singh, Homotopy Perturbation Method for Fractional Fornberg–Whitham Equation, Comput. Math. Appl, 61 (2011) 250–254.
[11] S. Momani, Z. Odibat, A Novel Method for Nonlinear Fractional Partial Differential Equations: Combination of Dtm and Generalized Taylor’s Formula, J. Comput. Appl. Math, 220 (1–2) (2008) 85–95.
[12] J. Liu, G. Hou, Numerical Solutions of the Space- and Time-Fractional Coupled Burgers Equations By Generalized Differential Transform Method, Appl. Math. Comput, 217 (16) (2011) 7001–7008.
[13] R. Yulita Molliq, M.S.M. Noorani, I. Hashim, R.R. Ahmad, Approximate Solutions of Fractional Zakharov–Kuznetsov Equations By Vim, J. Comput. Appl. Math, 233 (2) (2009) 103–108.
[14] M.G. Sakar, F. Erdogan, A. Yildirim, Variational Iteration Method for the Time-Fractional Fornberg–Whitham Equation, Comput. Math. Appl, 63 (9) (2012) 1382–1388.
[15] M. Inc, the Approximate and Exact Solutions of the Space- and Time-Fractional Burgers Equations With Initial Conditions By Variational Iteration Method, J. Math. Anal. Appl, 345 (1) (2008) 476–484.
[16] H. Jafari, V.D. Gejji, Solving A System of Nonlinear Fractional Differential Equations Using Adomian Decomposition, Appl. Math. Comput, 196 (2006) 644– 651.
[17] S. Momani, Z. Odibat, Analytical Solution of A Time-Fractional Navier–Stokes Equation By Adomian Decomposition Method, Appl. Math. Comput, 177 (2006) 488–494.
[18] S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/Crc Press, Boca Raton, (2003).
[19] S.J. Liao, An Approximate Solution Technique Which Does Not Depend Upon Small Parameters: A Special Example, Int. J. NonLinear Mech,30 (1995) 371– 380.
[20] S.J. Liao, on the Homotopy Analysis Method for Nonlinear Problems, Appl. Math. Comput, 147 (2004) 499–513.
[21] S.J. Liao, Notes on the Homotopy Analysis Method: Some Definitions and Theorems, Commun. Nonlinear Sci. Numer. Simul, 14 (2009) 983–997.
[22] S.J. Liao, Comparison Between the Homotopy Analysis Method and the Homotopy Perturbation Method, Appl. Math. Comput, 169 (2005) 1186–1194.
[23] S.J. Liao, An Analytic Approach to Solve Multiple Solutions of A Strongly Nonlinear Problem, Appl. Math. Comput, 169 (2005) 854– 865.
[24] L. Song, H. Zhang, Application of Homotopy Analysis Method to Fractional Kdv–Burgers–Kuramoto Equation, Phys. Lett, A 367 (1– 2) (2007) 88–94.
[25] M. Ganjiani, Solution of Nonlinear Fractional Differential Equations Using Homotopy Analysis Method, Appl. Math. Model, 34 (6) (2010) 1634–1641.
[26] F. Abidi, K. Omrani, the Homotopy Analysis Method for Solving the Fornberg–Whitham Equation and Comparison With Adomian’s Decomposition Method, Comput. Math. Appl, 59 (2010) 2743–2750.
[27] I. Podlubny, Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation, Fract. Calc. Appl. Anal, 5 (4) (2002) 367–386.
[28] G. Adomian, A Review of the Decomposition Method In Applied Mathematics, J. Math. Anal. Appl,135 (1988) 44–501.
[29] G. Adomian, Solving Frontier Problems of Physics: the Decomposition Method, Kluwer Academic Publishers, Boston, (1999).
[30] K. Abbaoui, Y. Cherruault, New Ideas for Proving Convergence of Decomposition Methods, Comput. Math. Appl, 29 (7) (1995) 103– 108.