Generalized Multiplicative Indices on Certain Chemical Networks

International Journal of Mathematics Trends and Technology (IJMTT)
© 2022 by IJMTT Journal
Volume-68 Issue-6
Year of Publication : 2022
Authors : Divyashree B K, Jagadeesh R, Siddabasappa

How to Cite?

Divyashree B K, Jagadeesh R, Siddabasappa, "Generalized Multiplicative Indices on Certain Chemical Networks ," International Journal of Mathematics Trends and Technology, vol. 68, no. 6, pp. 17-32, 2022. Crossref,

The evaluation of some indices for chemical networks, which includes the first and the second Zagreb index, generalized multiplicative indices by which we can project the stability or other properties of networks, such as n-dimensional silicate networks SL(n), chain silicate networks(Cn), hexagonal networks (HXn), oxide networks(On), cellular networks HC(n), and Sierpinski networks S(Kp, m). The graphical analysis is used to plot the graphs and see the effects of our results on the considered parameters.

Keywords : Silicate networks, Chain silicate networks, Hexagonal networks, Oxide networks, Cellular networks, Sierpinski networks


[1] Liszka K. J, Antonio J. K, Siegel H. J, Problems with Comparing Interconnection Networks: Is an Alligator Better than an Armadillo?,IEEE Concurrency, 5(4) 18-28 (1997).
[2] Junming Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, (2001).
[3] H. Wiener, Structural Determination of Paraffin Boiling Points, Journal of American Chemical Society. 69(1) 17-20.
[4] P. W. Fowler, G. Caporossi, and P. Hansen, Distance Matrices, Wiener Indices, and Related Invariants of Fullerenes, J. Phys. Chem. A, 105(25) 6232-6242.
[5] A. R. Matamala and E. Estrada, Simplex optimization of generalized topological index (GTI-simplex): a unified approach to optimize QSPR models, J. Phys. Chem. A, 109(43) (2005) 9890-9895.
[6] M. Randić, T. Pisanski, M. Novič, and D. Plavšić, Novel graph distance matrix, J. Comput.Chem.,31(9) (2010) 1832-1841.
[7] F. Yang, Z.-D. Wang, and Y.-P. Huang, Modification of the Wiener index 4, J. Comp. Chem. ,25(6 ) (2004) 881-887.
[8] I.Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry,Springer, Berlin, (1986).
[9] V.R. Kulli, Multiplicative Connectivity Indices of Nanostructures, LAP LEMBERTAcademic Publishing, (2018).
[10] V.R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India, (2012).
[11] I. Gutman, B. Ruščić, N. Trinajstić, and C. F. Wilcox, Graph Theory and Molecular Orbitals. XII. Acyclic Polyenes, J. Chem.Phys., 62(9) (1975) 3399-3405.
[12] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virtual Inst. 1 (2011) 13-19.
[13] R. Todeschini, D. Ballabio, and V. Consonni, Novel molecular descriptors based on functions of new vertex degrees, in: Novel Molecular Structure Descriptors – Theory and Applications I, University of Kragujevac,Kragujevac, 8 (2010) 73-100.
[14] R. Todeschini and V. Consonni, New Local Vertex Invariants and Molecular Descriptors Based on Functions of the Vertex Degrees, MATCH Commun. Math. Comput. Chem. ,64 (2010) 359-372.
[15] S. Wang and B. Wei, Multiplicative Zagreb Indices of K-Trees, Discrete Applied Mathematics, 180 (2015)168-175.
[16] M. Eliasi, A. Iranmanesh, and I. Gutman, Multiplicative Versions of First Zagreb Index, MATCH Commun. Math. Comput. Chem., 68 (2012) 217-230.
[17] V. R. Kulli, Hyper-Banhatti indices and coindices of graphs, International Research Journal of Pure Algebra, 6(5) (2016) 300-304.
[18] V. R. Kulli, K1 and K2 Indices, International Journal of Mathematics Trends and Technology, 68(1) (2022) 43-52.
[19] V. R. Kulli, Banhatti − Nirmala Index of certain chemical networks, International Journal of Mathematics Trends and Technology, 68(4) (2022) 1