...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 68 | Issue 6 | Year 2022 | Article Id. IJMTT-V68I6P519 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I6P519

Existence of Chaos in the Nearest Neighbors Coupled Map Lattices


Yadan Yu
Received Revised Accepted Published
06 May 2022 15 Jun 2022 22 Jun 2022 02 Jul 2022
Abstract

This paper studies the existence of chaos in a class of Nearest Neighbor Coupled Mapping Lattice (NNCML). Prove that NNCML is chaotic in the sense of Li-Yorke or both Li-Yorke and Devaney by employing the coupled-expanding theory. At the end, two illustrative examples are provided.

Keywords
Chaos, Coupled-expansion theory, Coupled map lattice.
References

[1] W. Freeman, Chaos in the brain: possible roles in biological intelligence, Int. J. Intell. Syst., 10 (1995) 71–88.
[2] J. Lages and D. Shepelyansky, Suppression of quantum chaos in a quantum computer hardware, Phys. Rev. E., 74 (2006) 026208.
[3] L. Kocarev, M. Maggio, M. Ogorzalek, et al., Special issue on applications of chaos in modern communication systems, IEEE Trans. Circ. Syst. I, 48 (2001) 1385–1527.
[4] K. Kaneko, Theory and Applications of Coupled Map Lattice. John Wiley & Sons, (1993).
[5] G. Hu and Z. Qu, Controlling spatiotemporal chaos in coupled map lattice systems, Phys. Rev. Lett., 72 (1994) 68–97.
[6] J. Singha and N. Gupte, Spatial splay states and splay chimera states in coupled map lattices, Phys. Rev. E, 95 (2016) 052204.
[7] N. Balmforth, A. Jacobson and A. Provenzale, Synchronized family dynamics in globally coupled maps, Chaos, 9 (1999) 738-754.
[8] C. Tian and G. Chen, Chaos in the sense of Li-Yorke in coupled map lattices, Physica A, 376 (2007) 246–252. Yadan Yu / IJMTT, 68(6), 156-162, 2022 162
[9] A. Khellat, A. Ghaderi and N. Vasegh, Li-Yorke chaos and synchronous chaos in a globally nonlocal coupled map lattice, Chaos Solit. Fract., 44 (2011) 934-939.
[10] M. Nag and S. Poria, Li-Yorke chaos in globally coupled map lattice with delays, Int. J. Bifur. Chaos, 29 (2019) 1950183.
[11] W. Liang and Z. Zhang, Chaotification schemes of first-order partial difference equations via sine functions, J. Differ. Eq. Appl., 25 (2019) 665–675.
[12] W. Liang and Z. Zhang, Anti-control of chaos for first-order partial difference equations via sine and cosine functions, Int. J. Bifur. Chaos, 29 (2019) 1950140.
[13] W. Liang and H. Guo, Chaotification of first-order partial difference equations, Int. J. Bifur. Chaos, 30 (2020) 2050229.
[14] H. Guo and W. Liang, Existence of chaos for partial difference equations via tangent and cotangent functions, Adv. Diff. Equ., (2021), 1.
[15] Y. Shi and G. Chen, Chaos of discrete dynamical systems in complete metric spaces, Chaos Solit. Fract., 22 (2004) 555–571.
[16] X. Zhang, Y. Shi and G. Chen, Constructing chaotic polynomial maps, Int. J. Bifur. Chaos, 19 (2009) 531–543.
[17] Y. Shi, H. Ju and G. Chen, Coupled-expanding maps and one-sided symbolic dynamical systems, Chaos Solit. Fract., 39 (2009) 2138– 2149.
[18] Y. Shi and Q. Xing, Dense distribution of chaotic maps in continuous map spaces, Dyna. Sys., 26 (2011) 519–535.
[19] Y. Shi, P. Yu and G. Chen, Chaotification of discrete dynamical system in Banach spaces, Int. J. Bifurc. Chaos, 16 (2006) 2615-2636.

Citation :

Yadan Yu, "Existence of Chaos in the Nearest Neighbors Coupled Map Lattices," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 6, pp. 156-162, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I6P519

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved