Volume 68 | Issue 6 | Year 2022 | Article Id. IJMTT-V68I6P526 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I6P526
Received | Revised | Accepted | Published |
---|---|---|---|
27 May 2022 | 04 Jul 2022 | 07 Jul 2022 | 14 Jul 2022 |
Nonong Wahyuni, Mashadi, Sri Gemawati, "Modification of the Japanese Theorem on Heptagon," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 6, pp. 205-210, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I6P526
[1] W. J. Greenstreet, “Japanese Mathematics,” The Mathematical Gaxette., vol. 3, no. 55, pp. 268-270, 1906.
[2] R. Honsberger, Mathematical Gem III. New York, Mathematical Association of America, pp. 24-26, 1985.
[3] W. Reyes, “An Application of Thebault’s Theorem,” Forum Geometricorum, vol. 2, no. 12, pp. 183-185, 2002.
[4] M. Ahuja, W. Uegaki, and K. Matsushita, “Japanese Theorem: A little known Theorem with Many Proofs – Part II”, Missouri Journal of Mathematical Science, vol. 16, no. 3, pp. 149-158, 2004.
[5] N. Minculete, C. Barbu, and G. Szollosy, “About the Japanese Theorem,” Crux Mathematicorum, vol. 38, no. 5, pp. 188-193, 2012.
[6] M. Ahuja, W. Uegaki, and K. Matsushita, “Japanese Theorem: A little known theorem with many proofs – part I”, Missouri Journal of Mathematical Science, vol. 16, no. 2, pp. 72-81, 2004.
[7] Mashadi, Geometri, Pekanbaru, UR Press, pp. 166-226, 2015.
[8] Mashadi, Geometri Lanjut. Pekanbaru, UR Press, pp. 37-96, 2015.
[9] F. Perrier, “Carnot’s Theorem in Trigonometric Disguise,” The Mathematical Association, vol. 91, no. 520, pp. 115-117, 2007.
[10] A. Claudi and B. N. Roger, “Proof without words: Carnot’s Theorem for acute triangles,” The College Mathematics Journal, vol. 39, no. 2, pp. 111, 2010.
[11] S. Lang and G. Murrow, Geometry 2nd ed., New York, Spring-Verlag, pp. 163, 2000.
[12] H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, Washington D.C., “The Mathematical Association of America,” pp. 56-57, 1967.
[13] N. A. Court, “An Introduction to the Modern Geometry of the Triangle and Circle,” New York, Dover Publication, Inc., pp. 127-129, 2007.
[14] R. A. Johnson, “Advanced Euclidean Geometry,” New York, Dover Publication, Inc., pp. 85, 1985.
[15] G. W. I. S. Amarasinnghe, “A Concise Elementary Proof for the Ptolemy’s Theorem,” Global Journal of Advanced Research on Classical and Modern Geometris, vol. 2, no. 1, pp. 20-25, 2010.
[16] D. N. V. Krishna, “The New Proof of Ptolemy’s Theorem and Nine-Point Circle Theorem,” Mathematics and Computer Science, vol. 1, no. 4, pp. 93-100, 2016.