On Group A-Cordial Labeling of Uniform t-Ply

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2022 by IJMTT Journal
Volume-68 Issue-7
Year of Publication : 2022
Authors : Samina Boxwala, Aditi S. Phadke, Pramod N. Shinde
 10.14445/22315373/IJMTT-V68I7P504

How to Cite?

Samina Boxwala, Aditi S. Phadke, Pramod N. Shinde, "On Group A-Cordial Labeling of Uniform t-Ply," International Journal of Mathematics Trends and Technology, vol. 68, no. 7, pp. 21-25, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I7P504

Abstract
Let A denote the multiplicative group {1,−1, i,−i}. In this paper, we prove that every uniform t−ply with each path individually of length at least 5 is group A-cordial and in fact we have given an explicit labeling for the same.

Keywords : t− ply, uniform t−ply, group A−cordial labeling.

Reference

[1] Andar, M., Boxwala, S., Limaye, N.B. (2002). A Note on Cordial Labelings of Multiple Shells, Number Theory and Discrete Mathematics. Trends in Mathematics. Birkh¨auser, Basel.
[2] Andar, Mahesh, Samina Boxwala, and N. B. Limaye. Cordial labelings of some wheel related graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 41 (2002): 203- 208.
[3] Andar, Mahesh, Samina Boxwala, and Nirmala B. Limaye. On the cordiality of the t-ply Pt (u, v), Ars Combinatoria 77 (2005): 245-259.
[4] Andar, Mahesh M., Samina Boxwala, and Nirmala B. Limaye. On the cordiality of corona graphs, Ars combinatoria 78 (2006): 179-199.
[5] Andar, Mahesh, Samina Boxwala, and Nirmala B. Limaye. On the cordiality of the t-uniform homeomorphs-I, Ars Combinatoria 66 (2003): 313-318.
[6] Andar, Mahesh, Samina Boxwala, and Nirmala B. Limaye. On the cordiality of the t-uniform homeomorphs-II (Complete graphs), Ars Combinatoria 67 (2003): 213-220.
[7] Boxwala, Samina Abbas, and Priyam Vashishta. Some new families of graceful graphs, Electronic Notes in Discrete Mathematics 48 (2015): 127-133.
[8] Cahit, Ibrahim. Cordial Graphs: A Weaker Version of Graceful and Harmonious Graphs. Ars Combinatoria, 23. (1987), 201-208.
[9] Chandra, B. and Kala, Rukhmoni. Group S3 cordial prime labeling of graphs, Malaya Journal of Matematik. S. (2019), 403-407.
[10] Chandra, B. and Kala, Rukhmoni. Group S3 Cordial Prime Labeling of Some Graphs,International Journal of Applied Engineering Research,Volume 14, Number 22 (2019), 4203-4208.
[11] Athisayanathan, S., Ponraj, R. and Karthik Chidambaram, M., K., Group A cordial labeling of Graphs, International Journal of Applied Mathematical Sciences, Vol 10, No.1(2017), 1-11.
[12] Athisayanathan, S., Ponraj, R. and Karthik Chidambaram, M., K., Group {1,−1, i,−i} Cordial labeling of sum of Pn and Kn, Journal of Mathematical and Computational Science, Vol 7, No 2 (2017), 335-346.
[13] M. K. Karthik Chidambaram, S. Athisayanathan and R. Ponraj, Group {1,−1, i,−i} Cordial Labeling of Special Graphs, Palestine Journal of Mathematics Vol. 9(1)(2020), 69-76.
[14] M. K. Karthik Chidambaram, A Study on Group A cordial labeling of Graphs, Ph.D. Thesis submitted to Manonmaniam Sundaranar University, Tirunelveli, Dec. 2017.
[15] A. Tout, A. N. Dabboucy and K. Howalla, Prime Labeling of graphs, National Academy Science Letters, 11 pp. 365–368 (1982)